SimLOG: Simultaneous Local-Global Feature Learning for 3D Object Detection in Indoor Point Clouds
The acquisition of both local and global features from irregular point clouds is crucial for 3D object detection (3DOD). Current mainstream 3D detectors neglect significant local features during pooling operations or disregard many global features of the overall scene context. This paper proposes ne...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-12, Vol.25 (12), p.19482-19495 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19495 |
---|---|
container_issue | 12 |
container_start_page | 19482 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Wei, Mingqiang Chen, Baian Nan, Liangliang Xie, Haoran Gu, Lipeng Lu, Dening Lee Wang, Fu Li, Qing |
description | The acquisition of both local and global features from irregular point clouds is crucial for 3D object detection (3DOD). Current mainstream 3D detectors neglect significant local features during pooling operations or disregard many global features of the overall scene context. This paper proposes new techniques for simultaneously learning local-global features of scene point clouds to enhance 3DOD. Specifically, we propose an efficient 3DOD network in indoor point clouds, named SimLOG, which utilizes simultaneous local-global feature learning. SimLOG has two main contributions: a Dynamic Points Interaction (DPI) module to recover local features lost during pooling, and a Global Context Aggregation(GCA) module to aggregate multi-scale features from various layers of the encoder to improve scene context awareness. Unlike traditional local-global feature learning methods, our DPI and GCA modules are integrated into a single feature learning module, making it easily detachable and able to be incorporated into existing 3DOD networks to enhance their performance. SimLOG demonstrates superior performance over twenty competitors in terms of detection accuracy and robustness on both the SUN RGB-D and ScanNet V2 datasets. Specifically, SimLOG boosts the baseline VoteNet by 8.1% of mAP@0.25 on ScanNet V2 and by 3.9% of mAP@0.25 on SUN RGB-D. Code is publicly available at https://github.com/chenbaian-cs/SimLOG . |
doi_str_mv | 10.1109/TITS.2024.3449319 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10666919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666919</ieee_id><sourcerecordid>10_1109_TITS_2024_3449319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-52e3d6ac9c7cf7caa00eaf5399ace4dadbd5d16325e1f90f7c56ebdec949e3543</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILjIC0xNJj9t3Elra2GgQut6yCR3JGWaSDKz8O3N0C66Opd7zrkXPoSeKZlRStTrYXvYz0pS8hnjXDGqbtCECrEoCKHydpxLXigiyD16SOmYt1xQOkF6707VbvOGsw5drz2EIeEqGN0Vmy40usNr0P0QAVego3f-B7chYrbCu-YIpscr6LO44LHzeOttyO5XcL7Hyy4MNj2iu1Z3CZ4uOkXf64_D8rPIb7fL96owlC_6QpTArNRGmblp50ZrQkC3gimlDXCrbWOFpZKVAmirSI4ICY0Fo7gCJjibInq-a2JIKUJb_0Z30vGvpqQeGdUjo3pkVF8Y5c7LueMA4CovpVTZ_geBdWRj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SimLOG: Simultaneous Local-Global Feature Learning for 3D Object Detection in Indoor Point Clouds</title><source>IEEE Electronic Library (IEL)</source><creator>Wei, Mingqiang ; Chen, Baian ; Nan, Liangliang ; Xie, Haoran ; Gu, Lipeng ; Lu, Dening ; Lee Wang, Fu ; Li, Qing</creator><creatorcontrib>Wei, Mingqiang ; Chen, Baian ; Nan, Liangliang ; Xie, Haoran ; Gu, Lipeng ; Lu, Dening ; Lee Wang, Fu ; Li, Qing</creatorcontrib><description>The acquisition of both local and global features from irregular point clouds is crucial for 3D object detection (3DOD). Current mainstream 3D detectors neglect significant local features during pooling operations or disregard many global features of the overall scene context. This paper proposes new techniques for simultaneously learning local-global features of scene point clouds to enhance 3DOD. Specifically, we propose an efficient 3DOD network in indoor point clouds, named SimLOG, which utilizes simultaneous local-global feature learning. SimLOG has two main contributions: a Dynamic Points Interaction (DPI) module to recover local features lost during pooling, and a Global Context Aggregation(GCA) module to aggregate multi-scale features from various layers of the encoder to improve scene context awareness. Unlike traditional local-global feature learning methods, our DPI and GCA modules are integrated into a single feature learning module, making it easily detachable and able to be incorporated into existing 3DOD networks to enhance their performance. SimLOG demonstrates superior performance over twenty competitors in terms of detection accuracy and robustness on both the SUN RGB-D and ScanNet V2 datasets. Specifically, SimLOG boosts the baseline VoteNet by 8.1% of mAP@0.25 on ScanNet V2 and by 3.9% of mAP@0.25 on SUN RGB-D. Code is publicly available at https://github.com/chenbaian-cs/SimLOG .</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3449319</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D object detection ; Aggregates ; dynamic points interaction ; Feature extraction ; global context aggregation ; Object detection ; Point cloud compression ; Representation learning ; SimLOG ; Three-dimensional displays ; Transformers</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.19482-19495</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3370-471X ; 0000-0003-0316-0299 ; 0000-0002-1447-8991 ; 0000-0003-0965-3617 ; 0000-0003-0429-490X ; 0000-0002-3976-0053 ; 0000-0002-5629-9975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666919$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10666919$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Mingqiang</creatorcontrib><creatorcontrib>Chen, Baian</creatorcontrib><creatorcontrib>Nan, Liangliang</creatorcontrib><creatorcontrib>Xie, Haoran</creatorcontrib><creatorcontrib>Gu, Lipeng</creatorcontrib><creatorcontrib>Lu, Dening</creatorcontrib><creatorcontrib>Lee Wang, Fu</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><title>SimLOG: Simultaneous Local-Global Feature Learning for 3D Object Detection in Indoor Point Clouds</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The acquisition of both local and global features from irregular point clouds is crucial for 3D object detection (3DOD). Current mainstream 3D detectors neglect significant local features during pooling operations or disregard many global features of the overall scene context. This paper proposes new techniques for simultaneously learning local-global features of scene point clouds to enhance 3DOD. Specifically, we propose an efficient 3DOD network in indoor point clouds, named SimLOG, which utilizes simultaneous local-global feature learning. SimLOG has two main contributions: a Dynamic Points Interaction (DPI) module to recover local features lost during pooling, and a Global Context Aggregation(GCA) module to aggregate multi-scale features from various layers of the encoder to improve scene context awareness. Unlike traditional local-global feature learning methods, our DPI and GCA modules are integrated into a single feature learning module, making it easily detachable and able to be incorporated into existing 3DOD networks to enhance their performance. SimLOG demonstrates superior performance over twenty competitors in terms of detection accuracy and robustness on both the SUN RGB-D and ScanNet V2 datasets. Specifically, SimLOG boosts the baseline VoteNet by 8.1% of mAP@0.25 on ScanNet V2 and by 3.9% of mAP@0.25 on SUN RGB-D. Code is publicly available at https://github.com/chenbaian-cs/SimLOG .</description><subject>3D object detection</subject><subject>Aggregates</subject><subject>dynamic points interaction</subject><subject>Feature extraction</subject><subject>global context aggregation</subject><subject>Object detection</subject><subject>Point cloud compression</subject><subject>Representation learning</subject><subject>SimLOG</subject><subject>Three-dimensional displays</subject><subject>Transformers</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEUhYMoWKsPILjIC0xNJj9t3Elra2GgQut6yCR3JGWaSDKz8O3N0C66Opd7zrkXPoSeKZlRStTrYXvYz0pS8hnjXDGqbtCECrEoCKHydpxLXigiyD16SOmYt1xQOkF6707VbvOGsw5drz2EIeEqGN0Vmy40usNr0P0QAVego3f-B7chYrbCu-YIpscr6LO44LHzeOttyO5XcL7Hyy4MNj2iu1Z3CZ4uOkXf64_D8rPIb7fL96owlC_6QpTArNRGmblp50ZrQkC3gimlDXCrbWOFpZKVAmirSI4ICY0Fo7gCJjibInq-a2JIKUJb_0Z30vGvpqQeGdUjo3pkVF8Y5c7LueMA4CovpVTZ_geBdWRj</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Wei, Mingqiang</creator><creator>Chen, Baian</creator><creator>Nan, Liangliang</creator><creator>Xie, Haoran</creator><creator>Gu, Lipeng</creator><creator>Lu, Dening</creator><creator>Lee Wang, Fu</creator><creator>Li, Qing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3370-471X</orcidid><orcidid>https://orcid.org/0000-0003-0316-0299</orcidid><orcidid>https://orcid.org/0000-0002-1447-8991</orcidid><orcidid>https://orcid.org/0000-0003-0965-3617</orcidid><orcidid>https://orcid.org/0000-0003-0429-490X</orcidid><orcidid>https://orcid.org/0000-0002-3976-0053</orcidid><orcidid>https://orcid.org/0000-0002-5629-9975</orcidid></search><sort><creationdate>202412</creationdate><title>SimLOG: Simultaneous Local-Global Feature Learning for 3D Object Detection in Indoor Point Clouds</title><author>Wei, Mingqiang ; Chen, Baian ; Nan, Liangliang ; Xie, Haoran ; Gu, Lipeng ; Lu, Dening ; Lee Wang, Fu ; Li, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-52e3d6ac9c7cf7caa00eaf5399ace4dadbd5d16325e1f90f7c56ebdec949e3543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D object detection</topic><topic>Aggregates</topic><topic>dynamic points interaction</topic><topic>Feature extraction</topic><topic>global context aggregation</topic><topic>Object detection</topic><topic>Point cloud compression</topic><topic>Representation learning</topic><topic>SimLOG</topic><topic>Three-dimensional displays</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Mingqiang</creatorcontrib><creatorcontrib>Chen, Baian</creatorcontrib><creatorcontrib>Nan, Liangliang</creatorcontrib><creatorcontrib>Xie, Haoran</creatorcontrib><creatorcontrib>Gu, Lipeng</creatorcontrib><creatorcontrib>Lu, Dening</creatorcontrib><creatorcontrib>Lee Wang, Fu</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Mingqiang</au><au>Chen, Baian</au><au>Nan, Liangliang</au><au>Xie, Haoran</au><au>Gu, Lipeng</au><au>Lu, Dening</au><au>Lee Wang, Fu</au><au>Li, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SimLOG: Simultaneous Local-Global Feature Learning for 3D Object Detection in Indoor Point Clouds</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-12</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>19482</spage><epage>19495</epage><pages>19482-19495</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The acquisition of both local and global features from irregular point clouds is crucial for 3D object detection (3DOD). Current mainstream 3D detectors neglect significant local features during pooling operations or disregard many global features of the overall scene context. This paper proposes new techniques for simultaneously learning local-global features of scene point clouds to enhance 3DOD. Specifically, we propose an efficient 3DOD network in indoor point clouds, named SimLOG, which utilizes simultaneous local-global feature learning. SimLOG has two main contributions: a Dynamic Points Interaction (DPI) module to recover local features lost during pooling, and a Global Context Aggregation(GCA) module to aggregate multi-scale features from various layers of the encoder to improve scene context awareness. Unlike traditional local-global feature learning methods, our DPI and GCA modules are integrated into a single feature learning module, making it easily detachable and able to be incorporated into existing 3DOD networks to enhance their performance. SimLOG demonstrates superior performance over twenty competitors in terms of detection accuracy and robustness on both the SUN RGB-D and ScanNet V2 datasets. Specifically, SimLOG boosts the baseline VoteNet by 8.1% of mAP@0.25 on ScanNet V2 and by 3.9% of mAP@0.25 on SUN RGB-D. Code is publicly available at https://github.com/chenbaian-cs/SimLOG .</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3449319</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3370-471X</orcidid><orcidid>https://orcid.org/0000-0003-0316-0299</orcidid><orcidid>https://orcid.org/0000-0002-1447-8991</orcidid><orcidid>https://orcid.org/0000-0003-0965-3617</orcidid><orcidid>https://orcid.org/0000-0003-0429-490X</orcidid><orcidid>https://orcid.org/0000-0002-3976-0053</orcidid><orcidid>https://orcid.org/0000-0002-5629-9975</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-12, Vol.25 (12), p.19482-19495 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10666919 |
source | IEEE Electronic Library (IEL) |
subjects | 3D object detection Aggregates dynamic points interaction Feature extraction global context aggregation Object detection Point cloud compression Representation learning SimLOG Three-dimensional displays Transformers |
title | SimLOG: Simultaneous Local-Global Feature Learning for 3D Object Detection in Indoor Point Clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SimLOG:%20Simultaneous%20Local-Global%20Feature%20Learning%20for%203D%20Object%20Detection%20in%20Indoor%20Point%20Clouds&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wei,%20Mingqiang&rft.date=2024-12&rft.volume=25&rft.issue=12&rft.spage=19482&rft.epage=19495&rft.pages=19482-19495&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3449319&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3449319%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10666919&rfr_iscdi=true |