Deep Probabilistic Forecasting of Multivariate Count Data With "Sums and Shares" Distributions: A Case Study on Pedestrian Counts in a Multimodal Transport Hub

Forecasting counts data in transportation areas can enrich passenger information for public transport passengers, who may thus better plan their trips. Moreover, forecasting with uncertainty is particularly important in the transportation domain, where the risk of poorly managed high demand is to be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-11, Vol.25 (11), p.15687-15701
Hauptverfasser: de Nailly, Paul, Come, Etienne, Oukhellou, Latifa, Same, Allou, Ferriere, Jacques, Merad-Boudia, Yasmine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15701
container_issue 11
container_start_page 15687
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator de Nailly, Paul
Come, Etienne
Oukhellou, Latifa
Same, Allou
Ferriere, Jacques
Merad-Boudia, Yasmine
description Forecasting counts data in transportation areas can enrich passenger information for public transport passengers, who may thus better plan their trips. Moreover, forecasting with uncertainty is particularly important in the transportation domain, where the risk of poorly managed high demand is to be avoided. In this paper, we propose a new probabilistic prediction model well-suited for multivariate, overdispersed, and possibly correlated count data. This model combines the strength of the deep learning framework with the modeling of counts data allowed by "sums and shares" distributions. Indeed, deep learning models can handle uncertainty by relying on an abstraction of contextual data and by assuming output distributions. Our model learns a latent representation of the input data with the help of a recurrent neural network and then translates it into multivariate count predictions with a "sums and shares" distribution, well suited to tackle multivariate overdispersed and correlated count data. An extensive benchmark of the proposed model is carried out. We compare this model with seven others from the state-of-the-art probabilistic forecasting models using five open-source data (bikes, taxis, railways, traffic, wikipedia) and a specific use case on pedestrian counts within a multimodal transport hub in the Paris Region. Our model outperforms other models in situations where the data present temporal regularities. The results also highlight the potential of our model in the specific use case. Moreover, this forecasting represents an interesting way to predict short-term pedestrian counts in response to different events, such as concerts or transport disruptions.
doi_str_mv 10.1109/TITS.2024.3447282
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10666917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666917</ieee_id><sourcerecordid>10_1109_TITS_2024_3447282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-5991df72cc779dc896bb38c44f0b90e2ffeb21491be66fbc09606004369089063</originalsourceid><addsrcrecordid>eNpNkN9KwzAUxosoOKcPIHhx2H1n0qZp451szg0mDlrxsiRp6iJdM5JU2NP4qrZ0F16dj8P3B35BcI_RHGPEHotNkc8jFJF5TEgaZdFFMMFJkoUIYXo56IiEDCXoOrhx7rv_kgTjSfC7VOoIO2sEF7rRzmsJK2OV5L1sv8DU8NY1Xv9wq7lXsDBd62HJPYdP7fcwy7uDA95WkO-5VW4Gy77EatF5bVr3BM-w4E5B7rvqBKaFnarUYODt2OVAt8DHkYOpeAOF5a07Guth3Ynb4KrmjVN35zsNPlYvxWIdbt9fN4vnbSgxyXyYMIarOo2kTFNWyYxRIeJMElIjwZCK6lqJCBOGhaK0FhIxiihCJKYMZQzReBrgsVda45xVdXm0-sDtqcSoHAiXA-FyIFyeCfeZhzGjlVL__JRShtP4DyLFeY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Probabilistic Forecasting of Multivariate Count Data With "Sums and Shares" Distributions: A Case Study on Pedestrian Counts in a Multimodal Transport Hub</title><source>IEEE Electronic Library (IEL)</source><creator>de Nailly, Paul ; Come, Etienne ; Oukhellou, Latifa ; Same, Allou ; Ferriere, Jacques ; Merad-Boudia, Yasmine</creator><creatorcontrib>de Nailly, Paul ; Come, Etienne ; Oukhellou, Latifa ; Same, Allou ; Ferriere, Jacques ; Merad-Boudia, Yasmine</creatorcontrib><description>Forecasting counts data in transportation areas can enrich passenger information for public transport passengers, who may thus better plan their trips. Moreover, forecasting with uncertainty is particularly important in the transportation domain, where the risk of poorly managed high demand is to be avoided. In this paper, we propose a new probabilistic prediction model well-suited for multivariate, overdispersed, and possibly correlated count data. This model combines the strength of the deep learning framework with the modeling of counts data allowed by "sums and shares" distributions. Indeed, deep learning models can handle uncertainty by relying on an abstraction of contextual data and by assuming output distributions. Our model learns a latent representation of the input data with the help of a recurrent neural network and then translates it into multivariate count predictions with a "sums and shares" distribution, well suited to tackle multivariate overdispersed and correlated count data. An extensive benchmark of the proposed model is carried out. We compare this model with seven others from the state-of-the-art probabilistic forecasting models using five open-source data (bikes, taxis, railways, traffic, wikipedia) and a specific use case on pedestrian counts within a multimodal transport hub in the Paris Region. Our model outperforms other models in situations where the data present temporal regularities. The results also highlight the potential of our model in the specific use case. Moreover, this forecasting represents an interesting way to predict short-term pedestrian counts in response to different events, such as concerts or transport disruptions.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3447282</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>count data ; Data models ; Deep learning ; Forecasting ; multimodal transport hub ; Multivariate time-series ; Predictive models ; probabilistic forecasting ; Probabilistic logic ; public transport ; Time series analysis ; time-series ; Uncertainty</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.15687-15701</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-5991df72cc779dc896bb38c44f0b90e2ffeb21491be66fbc09606004369089063</cites><orcidid>0000-0002-5193-1732 ; 0000-0003-1531-6019 ; 0000-0001-9643-752X ; 0000-0001-6204-6176 ; 0000-0002-0459-6388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10666917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Nailly, Paul</creatorcontrib><creatorcontrib>Come, Etienne</creatorcontrib><creatorcontrib>Oukhellou, Latifa</creatorcontrib><creatorcontrib>Same, Allou</creatorcontrib><creatorcontrib>Ferriere, Jacques</creatorcontrib><creatorcontrib>Merad-Boudia, Yasmine</creatorcontrib><title>Deep Probabilistic Forecasting of Multivariate Count Data With "Sums and Shares" Distributions: A Case Study on Pedestrian Counts in a Multimodal Transport Hub</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Forecasting counts data in transportation areas can enrich passenger information for public transport passengers, who may thus better plan their trips. Moreover, forecasting with uncertainty is particularly important in the transportation domain, where the risk of poorly managed high demand is to be avoided. In this paper, we propose a new probabilistic prediction model well-suited for multivariate, overdispersed, and possibly correlated count data. This model combines the strength of the deep learning framework with the modeling of counts data allowed by "sums and shares" distributions. Indeed, deep learning models can handle uncertainty by relying on an abstraction of contextual data and by assuming output distributions. Our model learns a latent representation of the input data with the help of a recurrent neural network and then translates it into multivariate count predictions with a "sums and shares" distribution, well suited to tackle multivariate overdispersed and correlated count data. An extensive benchmark of the proposed model is carried out. We compare this model with seven others from the state-of-the-art probabilistic forecasting models using five open-source data (bikes, taxis, railways, traffic, wikipedia) and a specific use case on pedestrian counts within a multimodal transport hub in the Paris Region. Our model outperforms other models in situations where the data present temporal regularities. The results also highlight the potential of our model in the specific use case. Moreover, this forecasting represents an interesting way to predict short-term pedestrian counts in response to different events, such as concerts or transport disruptions.</description><subject>count data</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Forecasting</subject><subject>multimodal transport hub</subject><subject>Multivariate time-series</subject><subject>Predictive models</subject><subject>probabilistic forecasting</subject><subject>Probabilistic logic</subject><subject>public transport</subject><subject>Time series analysis</subject><subject>time-series</subject><subject>Uncertainty</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9KwzAUxosoOKcPIHhx2H1n0qZp451szg0mDlrxsiRp6iJdM5JU2NP4qrZ0F16dj8P3B35BcI_RHGPEHotNkc8jFJF5TEgaZdFFMMFJkoUIYXo56IiEDCXoOrhx7rv_kgTjSfC7VOoIO2sEF7rRzmsJK2OV5L1sv8DU8NY1Xv9wq7lXsDBd62HJPYdP7fcwy7uDA95WkO-5VW4Gy77EatF5bVr3BM-w4E5B7rvqBKaFnarUYODt2OVAt8DHkYOpeAOF5a07Guth3Ynb4KrmjVN35zsNPlYvxWIdbt9fN4vnbSgxyXyYMIarOo2kTFNWyYxRIeJMElIjwZCK6lqJCBOGhaK0FhIxiihCJKYMZQzReBrgsVda45xVdXm0-sDtqcSoHAiXA-FyIFyeCfeZhzGjlVL__JRShtP4DyLFeY4</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>de Nailly, Paul</creator><creator>Come, Etienne</creator><creator>Oukhellou, Latifa</creator><creator>Same, Allou</creator><creator>Ferriere, Jacques</creator><creator>Merad-Boudia, Yasmine</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5193-1732</orcidid><orcidid>https://orcid.org/0000-0003-1531-6019</orcidid><orcidid>https://orcid.org/0000-0001-9643-752X</orcidid><orcidid>https://orcid.org/0000-0001-6204-6176</orcidid><orcidid>https://orcid.org/0000-0002-0459-6388</orcidid></search><sort><creationdate>202411</creationdate><title>Deep Probabilistic Forecasting of Multivariate Count Data With "Sums and Shares" Distributions: A Case Study on Pedestrian Counts in a Multimodal Transport Hub</title><author>de Nailly, Paul ; Come, Etienne ; Oukhellou, Latifa ; Same, Allou ; Ferriere, Jacques ; Merad-Boudia, Yasmine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-5991df72cc779dc896bb38c44f0b90e2ffeb21491be66fbc09606004369089063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>count data</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Forecasting</topic><topic>multimodal transport hub</topic><topic>Multivariate time-series</topic><topic>Predictive models</topic><topic>probabilistic forecasting</topic><topic>Probabilistic logic</topic><topic>public transport</topic><topic>Time series analysis</topic><topic>time-series</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Nailly, Paul</creatorcontrib><creatorcontrib>Come, Etienne</creatorcontrib><creatorcontrib>Oukhellou, Latifa</creatorcontrib><creatorcontrib>Same, Allou</creatorcontrib><creatorcontrib>Ferriere, Jacques</creatorcontrib><creatorcontrib>Merad-Boudia, Yasmine</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Nailly, Paul</au><au>Come, Etienne</au><au>Oukhellou, Latifa</au><au>Same, Allou</au><au>Ferriere, Jacques</au><au>Merad-Boudia, Yasmine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Probabilistic Forecasting of Multivariate Count Data With "Sums and Shares" Distributions: A Case Study on Pedestrian Counts in a Multimodal Transport Hub</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>15687</spage><epage>15701</epage><pages>15687-15701</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Forecasting counts data in transportation areas can enrich passenger information for public transport passengers, who may thus better plan their trips. Moreover, forecasting with uncertainty is particularly important in the transportation domain, where the risk of poorly managed high demand is to be avoided. In this paper, we propose a new probabilistic prediction model well-suited for multivariate, overdispersed, and possibly correlated count data. This model combines the strength of the deep learning framework with the modeling of counts data allowed by "sums and shares" distributions. Indeed, deep learning models can handle uncertainty by relying on an abstraction of contextual data and by assuming output distributions. Our model learns a latent representation of the input data with the help of a recurrent neural network and then translates it into multivariate count predictions with a "sums and shares" distribution, well suited to tackle multivariate overdispersed and correlated count data. An extensive benchmark of the proposed model is carried out. We compare this model with seven others from the state-of-the-art probabilistic forecasting models using five open-source data (bikes, taxis, railways, traffic, wikipedia) and a specific use case on pedestrian counts within a multimodal transport hub in the Paris Region. Our model outperforms other models in situations where the data present temporal regularities. The results also highlight the potential of our model in the specific use case. Moreover, this forecasting represents an interesting way to predict short-term pedestrian counts in response to different events, such as concerts or transport disruptions.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3447282</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5193-1732</orcidid><orcidid>https://orcid.org/0000-0003-1531-6019</orcidid><orcidid>https://orcid.org/0000-0001-9643-752X</orcidid><orcidid>https://orcid.org/0000-0001-6204-6176</orcidid><orcidid>https://orcid.org/0000-0002-0459-6388</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.15687-15701
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10666917
source IEEE Electronic Library (IEL)
subjects count data
Data models
Deep learning
Forecasting
multimodal transport hub
Multivariate time-series
Predictive models
probabilistic forecasting
Probabilistic logic
public transport
Time series analysis
time-series
Uncertainty
title Deep Probabilistic Forecasting of Multivariate Count Data With "Sums and Shares" Distributions: A Case Study on Pedestrian Counts in a Multimodal Transport Hub
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Probabilistic%20Forecasting%20of%20Multivariate%20Count%20Data%20With%20%22Sums%20and%20Shares%22%20Distributions:%20A%20Case%20Study%20on%20Pedestrian%20Counts%20in%20a%20Multimodal%20Transport%20Hub&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=de%20Nailly,%20Paul&rft.date=2024-11&rft.volume=25&rft.issue=11&rft.spage=15687&rft.epage=15701&rft.pages=15687-15701&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3447282&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3447282%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10666917&rfr_iscdi=true