Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification

Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-12, Vol.11 (23), p.38884-38894
Hauptverfasser: Zhang, Sicheng, Li, Longfei, Li, Zixin, Zhang, Haichao, Si, Guangzhen, Wang, Yu, Gui, Guan, Lin, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38894
container_issue 23
container_start_page 38884
container_title IEEE internet of things journal
container_volume 11
creator Zhang, Sicheng
Li, Longfei
Li, Zixin
Zhang, Haichao
Si, Guangzhen
Wang, Yu
Gui, Guan
Lin, Yun
description Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malicious manipulations, potentially resulting in backdoor attacks. In this article, we propose a novel wavelet domain frequency steganography (WDFS) backdoor attack method to demonstrate this security flaw, designed explicitly for misleading AMC. This method employs discrete wavelet transform and singular value decomposition to segment signals into distinct wavelet domain frequency components. We embed the backdoor trigger directly into these components, ensuring it is sample-specific and undetectable. Extensive testing shows that our WDFS method outperforms existing methods in terms of attack efficiency and stealth and successfully evades several advanced backdoor defense mechanisms, demonstrating its robustness. These findings highlight the urgent need for enhanced security measures in AMC systems within the artificial intelligence domain.
doi_str_mv 10.1109/JIOT.2024.3454668
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10666896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666896</ieee_id><sourcerecordid>3130932673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-beea3477f77747570a7f5c0610a4b4a617bd50d9cfb5e19a9030c71fb234bc123</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5ACYemngG-29b94goioFwEOOx6XZbLC5bbLsmfHuLcPA0v8m8N5N5AFxjNMIYlXevs-VqRBBhI8oKxvn9GegRSsQwMzn_x5dgEOMGIZRtBS55D7gP9WMak-Cj3yrXwmkw351p9R6-JbNWrV8Htfvcwwelv2rvAxynlBHajAsXG6Nq167huEvZn5yGC193TSbfwkmjYnTW6b_2ClxY1UQzONU-eJ8-rSYvw_nyeTYZz4caC56GlTGKMiGsEIKJQiAlbKERx0ixiimORVUXqC61rQqDS1UiirTAtiKUVRoT2ge3x7274PMrMcmN70KbT0qKKSop4YJmFT6qdPAxBmPlLritCnuJkTyEKg-hykOo8hRq9twcPc4Y80_P87Dk9BfdenQp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130932673</pqid></control><display><type>article</type><title>Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Sicheng ; Li, Longfei ; Li, Zixin ; Zhang, Haichao ; Si, Guangzhen ; Wang, Yu ; Gui, Guan ; Lin, Yun</creator><creatorcontrib>Zhang, Sicheng ; Li, Longfei ; Li, Zixin ; Zhang, Haichao ; Si, Guangzhen ; Wang, Yu ; Gui, Guan ; Lin, Yun</creatorcontrib><description>Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malicious manipulations, potentially resulting in backdoor attacks. In this article, we propose a novel wavelet domain frequency steganography (WDFS) backdoor attack method to demonstrate this security flaw, designed explicitly for misleading AMC. This method employs discrete wavelet transform and singular value decomposition to segment signals into distinct wavelet domain frequency components. We embed the backdoor trigger directly into these components, ensuring it is sample-specific and undetectable. Extensive testing shows that our WDFS method outperforms existing methods in terms of attack efficiency and stealth and successfully evades several advanced backdoor defense mechanisms, demonstrating its robustness. These findings highlight the urgent need for enhanced security measures in AMC systems within the artificial intelligence domain.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3454668</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Automatic modulation classification (AMC) ; backdoor attack ; Classification ; Cybersecurity ; Data collection ; deep learning (DL) ; Discrete Wavelet Transform ; Discrete wavelet transforms ; frequency steganography ; Internet of Things ; Machine learning ; Modulation ; Security ; Singular value decomposition ; Stealth technology ; Steganography ; Training ; Wavelet domain ; Wavelet transforms ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2024-12, Vol.11 (23), p.38884-38894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-beea3477f77747570a7f5c0610a4b4a617bd50d9cfb5e19a9030c71fb234bc123</cites><orcidid>0000-0002-9088-8773 ; 0009-0001-4690-4211 ; 0000-0002-7938-1066 ; 0000-0002-4002-1282 ; 0009-0006-9871-5566 ; 0000-0003-3888-2881 ; 0000-0001-7763-4261 ; 0000-0002-9304-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10666896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Sicheng</creatorcontrib><creatorcontrib>Li, Longfei</creatorcontrib><creatorcontrib>Li, Zixin</creatorcontrib><creatorcontrib>Zhang, Haichao</creatorcontrib><creatorcontrib>Si, Guangzhen</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><creatorcontrib>Lin, Yun</creatorcontrib><title>Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malicious manipulations, potentially resulting in backdoor attacks. In this article, we propose a novel wavelet domain frequency steganography (WDFS) backdoor attack method to demonstrate this security flaw, designed explicitly for misleading AMC. This method employs discrete wavelet transform and singular value decomposition to segment signals into distinct wavelet domain frequency components. We embed the backdoor trigger directly into these components, ensuring it is sample-specific and undetectable. Extensive testing shows that our WDFS method outperforms existing methods in terms of attack efficiency and stealth and successfully evades several advanced backdoor defense mechanisms, demonstrating its robustness. These findings highlight the urgent need for enhanced security measures in AMC systems within the artificial intelligence domain.</description><subject>Artificial intelligence</subject><subject>Automatic modulation classification (AMC)</subject><subject>backdoor attack</subject><subject>Classification</subject><subject>Cybersecurity</subject><subject>Data collection</subject><subject>deep learning (DL)</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>frequency steganography</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Modulation</subject><subject>Security</subject><subject>Singular value decomposition</subject><subject>Stealth technology</subject><subject>Steganography</subject><subject>Training</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT5ACYemngG-29b94goioFwEOOx6XZbLC5bbLsmfHuLcPA0v8m8N5N5AFxjNMIYlXevs-VqRBBhI8oKxvn9GegRSsQwMzn_x5dgEOMGIZRtBS55D7gP9WMak-Cj3yrXwmkw351p9R6-JbNWrV8Htfvcwwelv2rvAxynlBHajAsXG6Nq167huEvZn5yGC193TSbfwkmjYnTW6b_2ClxY1UQzONU-eJ8-rSYvw_nyeTYZz4caC56GlTGKMiGsEIKJQiAlbKERx0ixiimORVUXqC61rQqDS1UiirTAtiKUVRoT2ge3x7274PMrMcmN70KbT0qKKSop4YJmFT6qdPAxBmPlLritCnuJkTyEKg-hykOo8hRq9twcPc4Y80_P87Dk9BfdenQp</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhang, Sicheng</creator><creator>Li, Longfei</creator><creator>Li, Zixin</creator><creator>Zhang, Haichao</creator><creator>Si, Guangzhen</creator><creator>Wang, Yu</creator><creator>Gui, Guan</creator><creator>Lin, Yun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9088-8773</orcidid><orcidid>https://orcid.org/0009-0001-4690-4211</orcidid><orcidid>https://orcid.org/0000-0002-7938-1066</orcidid><orcidid>https://orcid.org/0000-0002-4002-1282</orcidid><orcidid>https://orcid.org/0009-0006-9871-5566</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><orcidid>https://orcid.org/0000-0001-7763-4261</orcidid><orcidid>https://orcid.org/0000-0002-9304-5851</orcidid></search><sort><creationdate>20241201</creationdate><title>Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification</title><author>Zhang, Sicheng ; Li, Longfei ; Li, Zixin ; Zhang, Haichao ; Si, Guangzhen ; Wang, Yu ; Gui, Guan ; Lin, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-beea3477f77747570a7f5c0610a4b4a617bd50d9cfb5e19a9030c71fb234bc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Automatic modulation classification (AMC)</topic><topic>backdoor attack</topic><topic>Classification</topic><topic>Cybersecurity</topic><topic>Data collection</topic><topic>deep learning (DL)</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>frequency steganography</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Modulation</topic><topic>Security</topic><topic>Singular value decomposition</topic><topic>Stealth technology</topic><topic>Steganography</topic><topic>Training</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Sicheng</creatorcontrib><creatorcontrib>Li, Longfei</creatorcontrib><creatorcontrib>Li, Zixin</creatorcontrib><creatorcontrib>Zhang, Haichao</creatorcontrib><creatorcontrib>Si, Guangzhen</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><creatorcontrib>Lin, Yun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Sicheng</au><au>Li, Longfei</au><au>Li, Zixin</au><au>Zhang, Haichao</au><au>Si, Guangzhen</au><au>Wang, Yu</au><au>Gui, Guan</au><au>Lin, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>11</volume><issue>23</issue><spage>38884</spage><epage>38894</epage><pages>38884-38894</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malicious manipulations, potentially resulting in backdoor attacks. In this article, we propose a novel wavelet domain frequency steganography (WDFS) backdoor attack method to demonstrate this security flaw, designed explicitly for misleading AMC. This method employs discrete wavelet transform and singular value decomposition to segment signals into distinct wavelet domain frequency components. We embed the backdoor trigger directly into these components, ensuring it is sample-specific and undetectable. Extensive testing shows that our WDFS method outperforms existing methods in terms of attack efficiency and stealth and successfully evades several advanced backdoor defense mechanisms, demonstrating its robustness. These findings highlight the urgent need for enhanced security measures in AMC systems within the artificial intelligence domain.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3454668</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9088-8773</orcidid><orcidid>https://orcid.org/0009-0001-4690-4211</orcidid><orcidid>https://orcid.org/0000-0002-7938-1066</orcidid><orcidid>https://orcid.org/0000-0002-4002-1282</orcidid><orcidid>https://orcid.org/0009-0006-9871-5566</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><orcidid>https://orcid.org/0000-0001-7763-4261</orcidid><orcidid>https://orcid.org/0000-0002-9304-5851</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-12, Vol.11 (23), p.38884-38894
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10666896
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Automatic modulation classification (AMC)
backdoor attack
Classification
Cybersecurity
Data collection
deep learning (DL)
Discrete Wavelet Transform
Discrete wavelet transforms
frequency steganography
Internet of Things
Machine learning
Modulation
Security
Singular value decomposition
Stealth technology
Steganography
Training
Wavelet domain
Wavelet transforms
Wireless communication
title Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20Domain%20Frequency%20Steganography%20Backdoor%20Attack%20for%20Misleading%20Automatic%20Modulation%20Classification&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhang,%20Sicheng&rft.date=2024-12-01&rft.volume=11&rft.issue=23&rft.spage=38884&rft.epage=38894&rft.pages=38884-38894&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3454668&rft_dat=%3Cproquest_RIE%3E3130932673%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130932673&rft_id=info:pmid/&rft_ieee_id=10666896&rfr_iscdi=true