Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification
Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malic...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-12, Vol.11 (23), p.38884-38894 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38894 |
---|---|
container_issue | 23 |
container_start_page | 38884 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Zhang, Sicheng Li, Longfei Li, Zixin Zhang, Haichao Si, Guangzhen Wang, Yu Gui, Guan Lin, Yun |
description | Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malicious manipulations, potentially resulting in backdoor attacks. In this article, we propose a novel wavelet domain frequency steganography (WDFS) backdoor attack method to demonstrate this security flaw, designed explicitly for misleading AMC. This method employs discrete wavelet transform and singular value decomposition to segment signals into distinct wavelet domain frequency components. We embed the backdoor trigger directly into these components, ensuring it is sample-specific and undetectable. Extensive testing shows that our WDFS method outperforms existing methods in terms of attack efficiency and stealth and successfully evades several advanced backdoor defense mechanisms, demonstrating its robustness. These findings highlight the urgent need for enhanced security measures in AMC systems within the artificial intelligence domain. |
doi_str_mv | 10.1109/JIOT.2024.3454668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10666896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666896</ieee_id><sourcerecordid>3130932673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-beea3477f77747570a7f5c0610a4b4a617bd50d9cfb5e19a9030c71fb234bc123</originalsourceid><addsrcrecordid>eNpNkE9PAjEQxRujiQT5ACYemngG-29b94goioFwEOOx6XZbLC5bbLsmfHuLcPA0v8m8N5N5AFxjNMIYlXevs-VqRBBhI8oKxvn9GegRSsQwMzn_x5dgEOMGIZRtBS55D7gP9WMak-Cj3yrXwmkw351p9R6-JbNWrV8Htfvcwwelv2rvAxynlBHajAsXG6Nq167huEvZn5yGC193TSbfwkmjYnTW6b_2ClxY1UQzONU-eJ8-rSYvw_nyeTYZz4caC56GlTGKMiGsEIKJQiAlbKERx0ixiimORVUXqC61rQqDS1UiirTAtiKUVRoT2ge3x7274PMrMcmN70KbT0qKKSop4YJmFT6qdPAxBmPlLritCnuJkTyEKg-hykOo8hRq9twcPc4Y80_P87Dk9BfdenQp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130932673</pqid></control><display><type>article</type><title>Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Sicheng ; Li, Longfei ; Li, Zixin ; Zhang, Haichao ; Si, Guangzhen ; Wang, Yu ; Gui, Guan ; Lin, Yun</creator><creatorcontrib>Zhang, Sicheng ; Li, Longfei ; Li, Zixin ; Zhang, Haichao ; Si, Guangzhen ; Wang, Yu ; Gui, Guan ; Lin, Yun</creatorcontrib><description>Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malicious manipulations, potentially resulting in backdoor attacks. In this article, we propose a novel wavelet domain frequency steganography (WDFS) backdoor attack method to demonstrate this security flaw, designed explicitly for misleading AMC. This method employs discrete wavelet transform and singular value decomposition to segment signals into distinct wavelet domain frequency components. We embed the backdoor trigger directly into these components, ensuring it is sample-specific and undetectable. Extensive testing shows that our WDFS method outperforms existing methods in terms of attack efficiency and stealth and successfully evades several advanced backdoor defense mechanisms, demonstrating its robustness. These findings highlight the urgent need for enhanced security measures in AMC systems within the artificial intelligence domain.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3454668</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Automatic modulation classification (AMC) ; backdoor attack ; Classification ; Cybersecurity ; Data collection ; deep learning (DL) ; Discrete Wavelet Transform ; Discrete wavelet transforms ; frequency steganography ; Internet of Things ; Machine learning ; Modulation ; Security ; Singular value decomposition ; Stealth technology ; Steganography ; Training ; Wavelet domain ; Wavelet transforms ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2024-12, Vol.11 (23), p.38884-38894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-beea3477f77747570a7f5c0610a4b4a617bd50d9cfb5e19a9030c71fb234bc123</cites><orcidid>0000-0002-9088-8773 ; 0009-0001-4690-4211 ; 0000-0002-7938-1066 ; 0000-0002-4002-1282 ; 0009-0006-9871-5566 ; 0000-0003-3888-2881 ; 0000-0001-7763-4261 ; 0000-0002-9304-5851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666896$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10666896$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Sicheng</creatorcontrib><creatorcontrib>Li, Longfei</creatorcontrib><creatorcontrib>Li, Zixin</creatorcontrib><creatorcontrib>Zhang, Haichao</creatorcontrib><creatorcontrib>Si, Guangzhen</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><creatorcontrib>Lin, Yun</creatorcontrib><title>Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malicious manipulations, potentially resulting in backdoor attacks. In this article, we propose a novel wavelet domain frequency steganography (WDFS) backdoor attack method to demonstrate this security flaw, designed explicitly for misleading AMC. This method employs discrete wavelet transform and singular value decomposition to segment signals into distinct wavelet domain frequency components. We embed the backdoor trigger directly into these components, ensuring it is sample-specific and undetectable. Extensive testing shows that our WDFS method outperforms existing methods in terms of attack efficiency and stealth and successfully evades several advanced backdoor defense mechanisms, demonstrating its robustness. These findings highlight the urgent need for enhanced security measures in AMC systems within the artificial intelligence domain.</description><subject>Artificial intelligence</subject><subject>Automatic modulation classification (AMC)</subject><subject>backdoor attack</subject><subject>Classification</subject><subject>Cybersecurity</subject><subject>Data collection</subject><subject>deep learning (DL)</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transforms</subject><subject>frequency steganography</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Modulation</subject><subject>Security</subject><subject>Singular value decomposition</subject><subject>Stealth technology</subject><subject>Steganography</subject><subject>Training</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9PAjEQxRujiQT5ACYemngG-29b94goioFwEOOx6XZbLC5bbLsmfHuLcPA0v8m8N5N5AFxjNMIYlXevs-VqRBBhI8oKxvn9GegRSsQwMzn_x5dgEOMGIZRtBS55D7gP9WMak-Cj3yrXwmkw351p9R6-JbNWrV8Htfvcwwelv2rvAxynlBHajAsXG6Nq167huEvZn5yGC193TSbfwkmjYnTW6b_2ClxY1UQzONU-eJ8-rSYvw_nyeTYZz4caC56GlTGKMiGsEIKJQiAlbKERx0ixiimORVUXqC61rQqDS1UiirTAtiKUVRoT2ge3x7274PMrMcmN70KbT0qKKSop4YJmFT6qdPAxBmPlLritCnuJkTyEKg-hykOo8hRq9twcPc4Y80_P87Dk9BfdenQp</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhang, Sicheng</creator><creator>Li, Longfei</creator><creator>Li, Zixin</creator><creator>Zhang, Haichao</creator><creator>Si, Guangzhen</creator><creator>Wang, Yu</creator><creator>Gui, Guan</creator><creator>Lin, Yun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9088-8773</orcidid><orcidid>https://orcid.org/0009-0001-4690-4211</orcidid><orcidid>https://orcid.org/0000-0002-7938-1066</orcidid><orcidid>https://orcid.org/0000-0002-4002-1282</orcidid><orcidid>https://orcid.org/0009-0006-9871-5566</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><orcidid>https://orcid.org/0000-0001-7763-4261</orcidid><orcidid>https://orcid.org/0000-0002-9304-5851</orcidid></search><sort><creationdate>20241201</creationdate><title>Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification</title><author>Zhang, Sicheng ; Li, Longfei ; Li, Zixin ; Zhang, Haichao ; Si, Guangzhen ; Wang, Yu ; Gui, Guan ; Lin, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-beea3477f77747570a7f5c0610a4b4a617bd50d9cfb5e19a9030c71fb234bc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Automatic modulation classification (AMC)</topic><topic>backdoor attack</topic><topic>Classification</topic><topic>Cybersecurity</topic><topic>Data collection</topic><topic>deep learning (DL)</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transforms</topic><topic>frequency steganography</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Modulation</topic><topic>Security</topic><topic>Singular value decomposition</topic><topic>Stealth technology</topic><topic>Steganography</topic><topic>Training</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Sicheng</creatorcontrib><creatorcontrib>Li, Longfei</creatorcontrib><creatorcontrib>Li, Zixin</creatorcontrib><creatorcontrib>Zhang, Haichao</creatorcontrib><creatorcontrib>Si, Guangzhen</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><creatorcontrib>Lin, Yun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Sicheng</au><au>Li, Longfei</au><au>Li, Zixin</au><au>Zhang, Haichao</au><au>Si, Guangzhen</au><au>Wang, Yu</au><au>Gui, Guan</au><au>Lin, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>11</volume><issue>23</issue><spage>38884</spage><epage>38894</epage><pages>38884-38894</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Deep learning (DL)-based automatic modulation classification (AMC) is increasingly utilized in wireless applications, particularly within the Internet of Things (IoT) ecosystem. However, the open data collection for these systems can lead to vulnerabilities, as the data sets are susceptible to malicious manipulations, potentially resulting in backdoor attacks. In this article, we propose a novel wavelet domain frequency steganography (WDFS) backdoor attack method to demonstrate this security flaw, designed explicitly for misleading AMC. This method employs discrete wavelet transform and singular value decomposition to segment signals into distinct wavelet domain frequency components. We embed the backdoor trigger directly into these components, ensuring it is sample-specific and undetectable. Extensive testing shows that our WDFS method outperforms existing methods in terms of attack efficiency and stealth and successfully evades several advanced backdoor defense mechanisms, demonstrating its robustness. These findings highlight the urgent need for enhanced security measures in AMC systems within the artificial intelligence domain.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3454668</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9088-8773</orcidid><orcidid>https://orcid.org/0009-0001-4690-4211</orcidid><orcidid>https://orcid.org/0000-0002-7938-1066</orcidid><orcidid>https://orcid.org/0000-0002-4002-1282</orcidid><orcidid>https://orcid.org/0009-0006-9871-5566</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><orcidid>https://orcid.org/0000-0001-7763-4261</orcidid><orcidid>https://orcid.org/0000-0002-9304-5851</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-12, Vol.11 (23), p.38884-38894 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10666896 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Automatic modulation classification (AMC) backdoor attack Classification Cybersecurity Data collection deep learning (DL) Discrete Wavelet Transform Discrete wavelet transforms frequency steganography Internet of Things Machine learning Modulation Security Singular value decomposition Stealth technology Steganography Training Wavelet domain Wavelet transforms Wireless communication |
title | Wavelet Domain Frequency Steganography Backdoor Attack for Misleading Automatic Modulation Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20Domain%20Frequency%20Steganography%20Backdoor%20Attack%20for%20Misleading%20Automatic%20Modulation%20Classification&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhang,%20Sicheng&rft.date=2024-12-01&rft.volume=11&rft.issue=23&rft.spage=38884&rft.epage=38894&rft.pages=38884-38894&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3454668&rft_dat=%3Cproquest_RIE%3E3130932673%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130932673&rft_id=info:pmid/&rft_ieee_id=10666896&rfr_iscdi=true |