A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing
Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple facto...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2024-12, Vol.20 (12), p.14287-14296 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14296 |
---|---|
container_issue | 12 |
container_start_page | 14287 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | Liu, Xiao Tan, Zhencai Liang, Li Li, Gaoxiang |
description | Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple factors that affect trust evaluation. First, the service rating gaps between the self-evaluation and other evaluation in a historical sliding window are calculated and differentially used to alleviate the behavior sparse problem of direct trust evaluation. In addition, a multiperspective weight algorithm is designed to improve the rationality of recommendation trust. Moreover, a reward and punishment factor are designed and incorporated into global trust calculation to enhance the reliability of trust evaluation. Compared with the existing mechanism model method of trust evaluation, the proposed MTFP strategy uses more node information, which can improve the detection precision and recall of malicious nodes at the same time. Finally, the experimental results validate the effectiveness of the proposed trust evaluation method. |
doi_str_mv | 10.1109/TII.2024.3449997 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10666851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666851</ieee_id><sourcerecordid>3141617399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-17a15baeaaefe694ba9eb734c4cb7df5f378e4a040e31fd1a5dfc14417dad6c33</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhiMEEqWwMzBYYk7x1U5cj1XVQqQWBsqIIse5FJd8FNsp6r_HVTsw3en0vKe7J4rugY4AqHxaZ9loTMd8xDiXUoqLaACSQ0xpQi9DnyQQszFl19GNc1tKmaBMDqLPKVn1tTelabB1pmtVTda2d57M96rulQ8jskL9pVrjGlJ1lmTNznZ7027IK_rfzn6Td9S9Nf5ATEsW3YbMumbX-0DcRleVqh3enesw-ljM17OXePn2nM2my1iDSHwMQkFSKFQKK0wlL5TEQjCuuS5EWSUVExPkinKKDKoSVFJWGjgHUaoy1YwNo8fT3nDZT4_O59uut-EXlzPgkIJgUgaKnihtO-csVvnOmkbZQw40P0rMg8T8KDE_SwyRh1PEIOI_PE3TSQLsD2_kb6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141617399</pqid></control><display><type>article</type><title>A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xiao ; Tan, Zhencai ; Liang, Li ; Li, Gaoxiang</creator><creatorcontrib>Liu, Xiao ; Tan, Zhencai ; Liang, Li ; Li, Gaoxiang</creatorcontrib><description>Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple factors that affect trust evaluation. First, the service rating gaps between the self-evaluation and other evaluation in a historical sliding window are calculated and differentially used to alleviate the behavior sparse problem of direct trust evaluation. In addition, a multiperspective weight algorithm is designed to improve the rationality of recommendation trust. Moreover, a reward and punishment factor are designed and incorporated into global trust calculation to enhance the reliability of trust evaluation. Compared with the existing mechanism model method of trust evaluation, the proposed MTFP strategy uses more node information, which can improve the detection precision and recall of malicious nodes at the same time. Finally, the experimental results validate the effectiveness of the proposed trust evaluation method.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3449997</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer architecture ; Edge computing ; Fog computing ; Heuristic algorithms ; Informatics ; Measurement ; multidimensional trust ; Network security ; Nodes ; Reliability engineering ; trust evaluation ; Trustworthiness ; weight algorithm</subject><ispartof>IEEE transactions on industrial informatics, 2024-12, Vol.20 (12), p.14287-14296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-17a15baeaaefe694ba9eb734c4cb7df5f378e4a040e31fd1a5dfc14417dad6c33</cites><orcidid>0009-0001-8480-5484 ; 0000-0001-9000-6630 ; 0000-0003-1933-7669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666851$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10666851$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Tan, Zhencai</creatorcontrib><creatorcontrib>Liang, Li</creatorcontrib><creatorcontrib>Li, Gaoxiang</creatorcontrib><title>A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple factors that affect trust evaluation. First, the service rating gaps between the self-evaluation and other evaluation in a historical sliding window are calculated and differentially used to alleviate the behavior sparse problem of direct trust evaluation. In addition, a multiperspective weight algorithm is designed to improve the rationality of recommendation trust. Moreover, a reward and punishment factor are designed and incorporated into global trust calculation to enhance the reliability of trust evaluation. Compared with the existing mechanism model method of trust evaluation, the proposed MTFP strategy uses more node information, which can improve the detection precision and recall of malicious nodes at the same time. Finally, the experimental results validate the effectiveness of the proposed trust evaluation method.</description><subject>Algorithms</subject><subject>Computer architecture</subject><subject>Edge computing</subject><subject>Fog computing</subject><subject>Heuristic algorithms</subject><subject>Informatics</subject><subject>Measurement</subject><subject>multidimensional trust</subject><subject>Network security</subject><subject>Nodes</subject><subject>Reliability engineering</subject><subject>trust evaluation</subject><subject>Trustworthiness</subject><subject>weight algorithm</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhiMEEqWwMzBYYk7x1U5cj1XVQqQWBsqIIse5FJd8FNsp6r_HVTsw3en0vKe7J4rugY4AqHxaZ9loTMd8xDiXUoqLaACSQ0xpQi9DnyQQszFl19GNc1tKmaBMDqLPKVn1tTelabB1pmtVTda2d57M96rulQ8jskL9pVrjGlJ1lmTNznZ7027IK_rfzn6Td9S9Nf5ATEsW3YbMumbX-0DcRleVqh3enesw-ljM17OXePn2nM2my1iDSHwMQkFSKFQKK0wlL5TEQjCuuS5EWSUVExPkinKKDKoSVFJWGjgHUaoy1YwNo8fT3nDZT4_O59uut-EXlzPgkIJgUgaKnihtO-csVvnOmkbZQw40P0rMg8T8KDE_SwyRh1PEIOI_PE3TSQLsD2_kb6o</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Liu, Xiao</creator><creator>Tan, Zhencai</creator><creator>Liang, Li</creator><creator>Li, Gaoxiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-8480-5484</orcidid><orcidid>https://orcid.org/0000-0001-9000-6630</orcidid><orcidid>https://orcid.org/0000-0003-1933-7669</orcidid></search><sort><creationdate>20241201</creationdate><title>A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing</title><author>Liu, Xiao ; Tan, Zhencai ; Liang, Li ; Li, Gaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-17a15baeaaefe694ba9eb734c4cb7df5f378e4a040e31fd1a5dfc14417dad6c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer architecture</topic><topic>Edge computing</topic><topic>Fog computing</topic><topic>Heuristic algorithms</topic><topic>Informatics</topic><topic>Measurement</topic><topic>multidimensional trust</topic><topic>Network security</topic><topic>Nodes</topic><topic>Reliability engineering</topic><topic>trust evaluation</topic><topic>Trustworthiness</topic><topic>weight algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Tan, Zhencai</creatorcontrib><creatorcontrib>Liang, Li</creatorcontrib><creatorcontrib>Li, Gaoxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiao</au><au>Tan, Zhencai</au><au>Liang, Li</au><au>Li, Gaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>14287</spage><epage>14296</epage><pages>14287-14296</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple factors that affect trust evaluation. First, the service rating gaps between the self-evaluation and other evaluation in a historical sliding window are calculated and differentially used to alleviate the behavior sparse problem of direct trust evaluation. In addition, a multiperspective weight algorithm is designed to improve the rationality of recommendation trust. Moreover, a reward and punishment factor are designed and incorporated into global trust calculation to enhance the reliability of trust evaluation. Compared with the existing mechanism model method of trust evaluation, the proposed MTFP strategy uses more node information, which can improve the detection precision and recall of malicious nodes at the same time. Finally, the experimental results validate the effectiveness of the proposed trust evaluation method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3449997</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-8480-5484</orcidid><orcidid>https://orcid.org/0000-0001-9000-6630</orcidid><orcidid>https://orcid.org/0000-0003-1933-7669</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-12, Vol.20 (12), p.14287-14296 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_10666851 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computer architecture Edge computing Fog computing Heuristic algorithms Informatics Measurement multidimensional trust Network security Nodes Reliability engineering trust evaluation Trustworthiness weight algorithm |
title | A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multidimensional%20Trust%20Evaluation%20Mechanism%20for%20Improving%20Network%20Security%20in%20Fog%20Computing&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Xiao&rft.date=2024-12-01&rft.volume=20&rft.issue=12&rft.spage=14287&rft.epage=14296&rft.pages=14287-14296&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3449997&rft_dat=%3Cproquest_RIE%3E3141617399%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141617399&rft_id=info:pmid/&rft_ieee_id=10666851&rfr_iscdi=true |