A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing

Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple facto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-12, Vol.20 (12), p.14287-14296
Hauptverfasser: Liu, Xiao, Tan, Zhencai, Liang, Li, Li, Gaoxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14296
container_issue 12
container_start_page 14287
container_title IEEE transactions on industrial informatics
container_volume 20
creator Liu, Xiao
Tan, Zhencai
Liang, Li
Li, Gaoxiang
description Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple factors that affect trust evaluation. First, the service rating gaps between the self-evaluation and other evaluation in a historical sliding window are calculated and differentially used to alleviate the behavior sparse problem of direct trust evaluation. In addition, a multiperspective weight algorithm is designed to improve the rationality of recommendation trust. Moreover, a reward and punishment factor are designed and incorporated into global trust calculation to enhance the reliability of trust evaluation. Compared with the existing mechanism model method of trust evaluation, the proposed MTFP strategy uses more node information, which can improve the detection precision and recall of malicious nodes at the same time. Finally, the experimental results validate the effectiveness of the proposed trust evaluation method.
doi_str_mv 10.1109/TII.2024.3449997
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10666851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666851</ieee_id><sourcerecordid>3141617399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-17a15baeaaefe694ba9eb734c4cb7df5f378e4a040e31fd1a5dfc14417dad6c33</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhiMEEqWwMzBYYk7x1U5cj1XVQqQWBsqIIse5FJd8FNsp6r_HVTsw3en0vKe7J4rugY4AqHxaZ9loTMd8xDiXUoqLaACSQ0xpQi9DnyQQszFl19GNc1tKmaBMDqLPKVn1tTelabB1pmtVTda2d57M96rulQ8jskL9pVrjGlJ1lmTNznZ7027IK_rfzn6Td9S9Nf5ATEsW3YbMumbX-0DcRleVqh3enesw-ljM17OXePn2nM2my1iDSHwMQkFSKFQKK0wlL5TEQjCuuS5EWSUVExPkinKKDKoSVFJWGjgHUaoy1YwNo8fT3nDZT4_O59uut-EXlzPgkIJgUgaKnihtO-csVvnOmkbZQw40P0rMg8T8KDE_SwyRh1PEIOI_PE3TSQLsD2_kb6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141617399</pqid></control><display><type>article</type><title>A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xiao ; Tan, Zhencai ; Liang, Li ; Li, Gaoxiang</creator><creatorcontrib>Liu, Xiao ; Tan, Zhencai ; Liang, Li ; Li, Gaoxiang</creatorcontrib><description>Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple factors that affect trust evaluation. First, the service rating gaps between the self-evaluation and other evaluation in a historical sliding window are calculated and differentially used to alleviate the behavior sparse problem of direct trust evaluation. In addition, a multiperspective weight algorithm is designed to improve the rationality of recommendation trust. Moreover, a reward and punishment factor are designed and incorporated into global trust calculation to enhance the reliability of trust evaluation. Compared with the existing mechanism model method of trust evaluation, the proposed MTFP strategy uses more node information, which can improve the detection precision and recall of malicious nodes at the same time. Finally, the experimental results validate the effectiveness of the proposed trust evaluation method.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3449997</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer architecture ; Edge computing ; Fog computing ; Heuristic algorithms ; Informatics ; Measurement ; multidimensional trust ; Network security ; Nodes ; Reliability engineering ; trust evaluation ; Trustworthiness ; weight algorithm</subject><ispartof>IEEE transactions on industrial informatics, 2024-12, Vol.20 (12), p.14287-14296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-17a15baeaaefe694ba9eb734c4cb7df5f378e4a040e31fd1a5dfc14417dad6c33</cites><orcidid>0009-0001-8480-5484 ; 0000-0001-9000-6630 ; 0000-0003-1933-7669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666851$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10666851$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Tan, Zhencai</creatorcontrib><creatorcontrib>Liang, Li</creatorcontrib><creatorcontrib>Li, Gaoxiang</creatorcontrib><title>A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple factors that affect trust evaluation. First, the service rating gaps between the self-evaluation and other evaluation in a historical sliding window are calculated and differentially used to alleviate the behavior sparse problem of direct trust evaluation. In addition, a multiperspective weight algorithm is designed to improve the rationality of recommendation trust. Moreover, a reward and punishment factor are designed and incorporated into global trust calculation to enhance the reliability of trust evaluation. Compared with the existing mechanism model method of trust evaluation, the proposed MTFP strategy uses more node information, which can improve the detection precision and recall of malicious nodes at the same time. Finally, the experimental results validate the effectiveness of the proposed trust evaluation method.</description><subject>Algorithms</subject><subject>Computer architecture</subject><subject>Edge computing</subject><subject>Fog computing</subject><subject>Heuristic algorithms</subject><subject>Informatics</subject><subject>Measurement</subject><subject>multidimensional trust</subject><subject>Network security</subject><subject>Nodes</subject><subject>Reliability engineering</subject><subject>trust evaluation</subject><subject>Trustworthiness</subject><subject>weight algorithm</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhiMEEqWwMzBYYk7x1U5cj1XVQqQWBsqIIse5FJd8FNsp6r_HVTsw3en0vKe7J4rugY4AqHxaZ9loTMd8xDiXUoqLaACSQ0xpQi9DnyQQszFl19GNc1tKmaBMDqLPKVn1tTelabB1pmtVTda2d57M96rulQ8jskL9pVrjGlJ1lmTNznZ7027IK_rfzn6Td9S9Nf5ATEsW3YbMumbX-0DcRleVqh3enesw-ljM17OXePn2nM2my1iDSHwMQkFSKFQKK0wlL5TEQjCuuS5EWSUVExPkinKKDKoSVFJWGjgHUaoy1YwNo8fT3nDZT4_O59uut-EXlzPgkIJgUgaKnihtO-csVvnOmkbZQw40P0rMg8T8KDE_SwyRh1PEIOI_PE3TSQLsD2_kb6o</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Liu, Xiao</creator><creator>Tan, Zhencai</creator><creator>Liang, Li</creator><creator>Li, Gaoxiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0001-8480-5484</orcidid><orcidid>https://orcid.org/0000-0001-9000-6630</orcidid><orcidid>https://orcid.org/0000-0003-1933-7669</orcidid></search><sort><creationdate>20241201</creationdate><title>A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing</title><author>Liu, Xiao ; Tan, Zhencai ; Liang, Li ; Li, Gaoxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-17a15baeaaefe694ba9eb734c4cb7df5f378e4a040e31fd1a5dfc14417dad6c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computer architecture</topic><topic>Edge computing</topic><topic>Fog computing</topic><topic>Heuristic algorithms</topic><topic>Informatics</topic><topic>Measurement</topic><topic>multidimensional trust</topic><topic>Network security</topic><topic>Nodes</topic><topic>Reliability engineering</topic><topic>trust evaluation</topic><topic>Trustworthiness</topic><topic>weight algorithm</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Tan, Zhencai</creatorcontrib><creatorcontrib>Liang, Li</creatorcontrib><creatorcontrib>Li, Gaoxiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiao</au><au>Tan, Zhencai</au><au>Liang, Li</au><au>Li, Gaoxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>14287</spage><epage>14296</epage><pages>14287-14296</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Nodes in fog computing are easily captured since they are generally resource-constraint and usually work in open and unprotected environments. In this article, a multidimensional trust fusion preference (MTFP) strategy is proposed to detect the malicious node, which mines and utilizes multiple factors that affect trust evaluation. First, the service rating gaps between the self-evaluation and other evaluation in a historical sliding window are calculated and differentially used to alleviate the behavior sparse problem of direct trust evaluation. In addition, a multiperspective weight algorithm is designed to improve the rationality of recommendation trust. Moreover, a reward and punishment factor are designed and incorporated into global trust calculation to enhance the reliability of trust evaluation. Compared with the existing mechanism model method of trust evaluation, the proposed MTFP strategy uses more node information, which can improve the detection precision and recall of malicious nodes at the same time. Finally, the experimental results validate the effectiveness of the proposed trust evaluation method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2024.3449997</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0001-8480-5484</orcidid><orcidid>https://orcid.org/0000-0001-9000-6630</orcidid><orcidid>https://orcid.org/0000-0003-1933-7669</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-12, Vol.20 (12), p.14287-14296
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_10666851
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer architecture
Edge computing
Fog computing
Heuristic algorithms
Informatics
Measurement
multidimensional trust
Network security
Nodes
Reliability engineering
trust evaluation
Trustworthiness
weight algorithm
title A Multidimensional Trust Evaluation Mechanism for Improving Network Security in Fog Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multidimensional%20Trust%20Evaluation%20Mechanism%20for%20Improving%20Network%20Security%20in%20Fog%20Computing&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Xiao&rft.date=2024-12-01&rft.volume=20&rft.issue=12&rft.spage=14287&rft.epage=14296&rft.pages=14287-14296&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3449997&rft_dat=%3Cproquest_RIE%3E3141617399%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141617399&rft_id=info:pmid/&rft_ieee_id=10666851&rfr_iscdi=true