Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe
In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2025-01, Vol.43 (1), p.383-389 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 1 |
container_start_page | 383 |
container_title | Journal of lightwave technology |
container_volume | 43 |
creator | Liu, Yang Zheng, Rongcheng Peng, Sisu Xin, Zixuan Xu, Guodong Wei, Heming Caucheteur, Christophe Hu, Xuehao Qu, Hang |
description | In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these sensors incorporates Fabry-Perot (F-P) interferometric elements combined with elastic supporting brackets that compress under minimal forces. Our results indicated a sensitivity of 0.185 nm/μN for the probes, with a measurement capability extending beyond 100 μN. We also performed numerical simulations using the finite element method to verify the deformation of F-P cavities due to applied forces. As a proof-of-principle demonstration, we used the microforce probe to measure the Young's modulus of a copper wire. This novel microforce sensor is designed for the precise measurement of contact forces, aiding in the evaluation of mechanical properties in biological samples and flexible materials. Advantages of the developed sensor include its high sensitivity, compact size, ease of integration with micro-electromechanical systems, considerable deflection capacity for contour analysis, straightforward operational principle, and broad dynamic range. We anticipate that this new sensing approach will prove extremely valuable in precision biomedical and materials science research. |
doi_str_mv | 10.1109/JLT.2024.3451472 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10659065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10659065</ieee_id><sourcerecordid>3147526515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1266-1c68bfa500dfaa5212d3e4ff0985c54121864e6cc2c8249598755a635e63cbbd3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXjYxPNiv6bbPRoiolkDiXhuumWqJchiu5jw7y2Bg4fJXJ53Ph5CbhkdMUbrh9dmMeKUy5GQwGTFz8iAAeiScybOyYBWQpS64vKSXKW0opRJqasBqafh82u9L95xk0IffrGYhBZjOdv2wRUT28Z9OcfY9cVbcLHzXXRYzGPX4jW58Had8ObUh-Rj8rQYT8tm9vwyfmxKx7hSJXNKt94CpUtvLXDGlwKl97TW4EAyzrSSqJzjTnNZQ60rAKsEoBKubZdiSO6Pc7ex-9lh6s2q28VNXmlEfhS4AgaZokcqH5lSRG-2MXzbuDeMmoMgkwWZgyBzEpQjd8dIQMR_uII6l_gDKJdfnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147526515</pqid></control><display><type>article</type><title>Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yang ; Zheng, Rongcheng ; Peng, Sisu ; Xin, Zixuan ; Xu, Guodong ; Wei, Heming ; Caucheteur, Christophe ; Hu, Xuehao ; Qu, Hang</creator><creatorcontrib>Liu, Yang ; Zheng, Rongcheng ; Peng, Sisu ; Xin, Zixuan ; Xu, Guodong ; Wei, Heming ; Caucheteur, Christophe ; Hu, Xuehao ; Qu, Hang</creatorcontrib><description>In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these sensors incorporates Fabry-Perot (F-P) interferometric elements combined with elastic supporting brackets that compress under minimal forces. Our results indicated a sensitivity of 0.185 nm/μN for the probes, with a measurement capability extending beyond 100 μN. We also performed numerical simulations using the finite element method to verify the deformation of F-P cavities due to applied forces. As a proof-of-principle demonstration, we used the microforce probe to measure the Young's modulus of a copper wire. This novel microforce sensor is designed for the precise measurement of contact forces, aiding in the evaluation of mechanical properties in biological samples and flexible materials. Advantages of the developed sensor include its high sensitivity, compact size, ease of integration with micro-electromechanical systems, considerable deflection capacity for contour analysis, straightforward operational principle, and broad dynamic range. We anticipate that this new sensing approach will prove extremely valuable in precision biomedical and materials science research.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2024.3451472</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological properties ; Biomedical materials ; Contact force ; Copper wire ; Elastic deformation ; Fabry–Perot (F–P) interferometer ; femtosecond laser ; Fiber gratings ; Fiber optics ; Finite element method ; Force ; Materials science ; Mechanical properties ; Microelectromechanical systems ; Modulus of elasticity ; optical fiber force sensor ; Optical fiber sensors ; Optical fibers ; Probes ; Sensitivity ; Sensitivity analysis ; Sensors ; Three dimensional printing ; two-photon polymerization (TPP)</subject><ispartof>Journal of lightwave technology, 2025-01, Vol.43 (1), p.383-389</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1266-1c68bfa500dfaa5212d3e4ff0985c54121864e6cc2c8249598755a635e63cbbd3</cites><orcidid>0009-0008-4732-7381 ; 0000-0002-8023-7109 ; 0000-0003-1556-0222 ; 0000-0003-0239-6144 ; 0000-0002-6453-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10659065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10659065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zheng, Rongcheng</creatorcontrib><creatorcontrib>Peng, Sisu</creatorcontrib><creatorcontrib>Xin, Zixuan</creatorcontrib><creatorcontrib>Xu, Guodong</creatorcontrib><creatorcontrib>Wei, Heming</creatorcontrib><creatorcontrib>Caucheteur, Christophe</creatorcontrib><creatorcontrib>Hu, Xuehao</creatorcontrib><creatorcontrib>Qu, Hang</creatorcontrib><title>Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these sensors incorporates Fabry-Perot (F-P) interferometric elements combined with elastic supporting brackets that compress under minimal forces. Our results indicated a sensitivity of 0.185 nm/μN for the probes, with a measurement capability extending beyond 100 μN. We also performed numerical simulations using the finite element method to verify the deformation of F-P cavities due to applied forces. As a proof-of-principle demonstration, we used the microforce probe to measure the Young's modulus of a copper wire. This novel microforce sensor is designed for the precise measurement of contact forces, aiding in the evaluation of mechanical properties in biological samples and flexible materials. Advantages of the developed sensor include its high sensitivity, compact size, ease of integration with micro-electromechanical systems, considerable deflection capacity for contour analysis, straightforward operational principle, and broad dynamic range. We anticipate that this new sensing approach will prove extremely valuable in precision biomedical and materials science research.</description><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>Contact force</subject><subject>Copper wire</subject><subject>Elastic deformation</subject><subject>Fabry–Perot (F–P) interferometer</subject><subject>femtosecond laser</subject><subject>Fiber gratings</subject><subject>Fiber optics</subject><subject>Finite element method</subject><subject>Force</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Microelectromechanical systems</subject><subject>Modulus of elasticity</subject><subject>optical fiber force sensor</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Probes</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Three dimensional printing</subject><subject>two-photon polymerization (TPP)</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXjYxPNiv6bbPRoiolkDiXhuumWqJchiu5jw7y2Bg4fJXJ53Ph5CbhkdMUbrh9dmMeKUy5GQwGTFz8iAAeiScybOyYBWQpS64vKSXKW0opRJqasBqafh82u9L95xk0IffrGYhBZjOdv2wRUT28Z9OcfY9cVbcLHzXXRYzGPX4jW58Had8ObUh-Rj8rQYT8tm9vwyfmxKx7hSJXNKt94CpUtvLXDGlwKl97TW4EAyzrSSqJzjTnNZQ60rAKsEoBKubZdiSO6Pc7ex-9lh6s2q28VNXmlEfhS4AgaZokcqH5lSRG-2MXzbuDeMmoMgkwWZgyBzEpQjd8dIQMR_uII6l_gDKJdfnw</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Liu, Yang</creator><creator>Zheng, Rongcheng</creator><creator>Peng, Sisu</creator><creator>Xin, Zixuan</creator><creator>Xu, Guodong</creator><creator>Wei, Heming</creator><creator>Caucheteur, Christophe</creator><creator>Hu, Xuehao</creator><creator>Qu, Hang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-4732-7381</orcidid><orcidid>https://orcid.org/0000-0002-8023-7109</orcidid><orcidid>https://orcid.org/0000-0003-1556-0222</orcidid><orcidid>https://orcid.org/0000-0003-0239-6144</orcidid><orcidid>https://orcid.org/0000-0002-6453-6790</orcidid></search><sort><creationdate>20250101</creationdate><title>Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe</title><author>Liu, Yang ; Zheng, Rongcheng ; Peng, Sisu ; Xin, Zixuan ; Xu, Guodong ; Wei, Heming ; Caucheteur, Christophe ; Hu, Xuehao ; Qu, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1266-1c68bfa500dfaa5212d3e4ff0985c54121864e6cc2c8249598755a635e63cbbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>Contact force</topic><topic>Copper wire</topic><topic>Elastic deformation</topic><topic>Fabry–Perot (F–P) interferometer</topic><topic>femtosecond laser</topic><topic>Fiber gratings</topic><topic>Fiber optics</topic><topic>Finite element method</topic><topic>Force</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Microelectromechanical systems</topic><topic>Modulus of elasticity</topic><topic>optical fiber force sensor</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Probes</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Three dimensional printing</topic><topic>two-photon polymerization (TPP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zheng, Rongcheng</creatorcontrib><creatorcontrib>Peng, Sisu</creatorcontrib><creatorcontrib>Xin, Zixuan</creatorcontrib><creatorcontrib>Xu, Guodong</creatorcontrib><creatorcontrib>Wei, Heming</creatorcontrib><creatorcontrib>Caucheteur, Christophe</creatorcontrib><creatorcontrib>Hu, Xuehao</creatorcontrib><creatorcontrib>Qu, Hang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yang</au><au>Zheng, Rongcheng</au><au>Peng, Sisu</au><au>Xin, Zixuan</au><au>Xu, Guodong</au><au>Wei, Heming</au><au>Caucheteur, Christophe</au><au>Hu, Xuehao</au><au>Qu, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>43</volume><issue>1</issue><spage>383</spage><epage>389</epage><pages>383-389</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these sensors incorporates Fabry-Perot (F-P) interferometric elements combined with elastic supporting brackets that compress under minimal forces. Our results indicated a sensitivity of 0.185 nm/μN for the probes, with a measurement capability extending beyond 100 μN. We also performed numerical simulations using the finite element method to verify the deformation of F-P cavities due to applied forces. As a proof-of-principle demonstration, we used the microforce probe to measure the Young's modulus of a copper wire. This novel microforce sensor is designed for the precise measurement of contact forces, aiding in the evaluation of mechanical properties in biological samples and flexible materials. Advantages of the developed sensor include its high sensitivity, compact size, ease of integration with micro-electromechanical systems, considerable deflection capacity for contour analysis, straightforward operational principle, and broad dynamic range. We anticipate that this new sensing approach will prove extremely valuable in precision biomedical and materials science research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2024.3451472</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0008-4732-7381</orcidid><orcidid>https://orcid.org/0000-0002-8023-7109</orcidid><orcidid>https://orcid.org/0000-0003-1556-0222</orcidid><orcidid>https://orcid.org/0000-0003-0239-6144</orcidid><orcidid>https://orcid.org/0000-0002-6453-6790</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2025-01, Vol.43 (1), p.383-389 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_10659065 |
source | IEEE Electronic Library (IEL) |
subjects | Biological properties Biomedical materials Contact force Copper wire Elastic deformation Fabry–Perot (F–P) interferometer femtosecond laser Fiber gratings Fiber optics Finite element method Force Materials science Mechanical properties Microelectromechanical systems Modulus of elasticity optical fiber force sensor Optical fiber sensors Optical fibers Probes Sensitivity Sensitivity analysis Sensors Three dimensional printing two-photon polymerization (TPP) |
title | Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Sensitive%20Fiber-Optic%20Fabry-Perot%20Microforce%20Probe&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Liu,%20Yang&rft.date=2025-01-01&rft.volume=43&rft.issue=1&rft.spage=383&rft.epage=389&rft.pages=383-389&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2024.3451472&rft_dat=%3Cproquest_RIE%3E3147526515%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147526515&rft_id=info:pmid/&rft_ieee_id=10659065&rfr_iscdi=true |