Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe

In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2025-01, Vol.43 (1), p.383-389
Hauptverfasser: Liu, Yang, Zheng, Rongcheng, Peng, Sisu, Xin, Zixuan, Xu, Guodong, Wei, Heming, Caucheteur, Christophe, Hu, Xuehao, Qu, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 1
container_start_page 383
container_title Journal of lightwave technology
container_volume 43
creator Liu, Yang
Zheng, Rongcheng
Peng, Sisu
Xin, Zixuan
Xu, Guodong
Wei, Heming
Caucheteur, Christophe
Hu, Xuehao
Qu, Hang
description In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these sensors incorporates Fabry-Perot (F-P) interferometric elements combined with elastic supporting brackets that compress under minimal forces. Our results indicated a sensitivity of 0.185 nm/μN for the probes, with a measurement capability extending beyond 100 μN. We also performed numerical simulations using the finite element method to verify the deformation of F-P cavities due to applied forces. As a proof-of-principle demonstration, we used the microforce probe to measure the Young's modulus of a copper wire. This novel microforce sensor is designed for the precise measurement of contact forces, aiding in the evaluation of mechanical properties in biological samples and flexible materials. Advantages of the developed sensor include its high sensitivity, compact size, ease of integration with micro-electromechanical systems, considerable deflection capacity for contour analysis, straightforward operational principle, and broad dynamic range. We anticipate that this new sensing approach will prove extremely valuable in precision biomedical and materials science research.
doi_str_mv 10.1109/JLT.2024.3451472
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10659065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10659065</ieee_id><sourcerecordid>3147526515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1266-1c68bfa500dfaa5212d3e4ff0985c54121864e6cc2c8249598755a635e63cbbd3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYjePXjYxPNiv6bbPRoiolkDiXhuumWqJchiu5jw7y2Bg4fJXJ53Ph5CbhkdMUbrh9dmMeKUy5GQwGTFz8iAAeiScybOyYBWQpS64vKSXKW0opRJqasBqafh82u9L95xk0IffrGYhBZjOdv2wRUT28Z9OcfY9cVbcLHzXXRYzGPX4jW58Had8ObUh-Rj8rQYT8tm9vwyfmxKx7hSJXNKt94CpUtvLXDGlwKl97TW4EAyzrSSqJzjTnNZQ60rAKsEoBKubZdiSO6Pc7ex-9lh6s2q28VNXmlEfhS4AgaZokcqH5lSRG-2MXzbuDeMmoMgkwWZgyBzEpQjd8dIQMR_uII6l_gDKJdfnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147526515</pqid></control><display><type>article</type><title>Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Yang ; Zheng, Rongcheng ; Peng, Sisu ; Xin, Zixuan ; Xu, Guodong ; Wei, Heming ; Caucheteur, Christophe ; Hu, Xuehao ; Qu, Hang</creator><creatorcontrib>Liu, Yang ; Zheng, Rongcheng ; Peng, Sisu ; Xin, Zixuan ; Xu, Guodong ; Wei, Heming ; Caucheteur, Christophe ; Hu, Xuehao ; Qu, Hang</creatorcontrib><description>In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these sensors incorporates Fabry-Perot (F-P) interferometric elements combined with elastic supporting brackets that compress under minimal forces. Our results indicated a sensitivity of 0.185 nm/μN for the probes, with a measurement capability extending beyond 100 μN. We also performed numerical simulations using the finite element method to verify the deformation of F-P cavities due to applied forces. As a proof-of-principle demonstration, we used the microforce probe to measure the Young's modulus of a copper wire. This novel microforce sensor is designed for the precise measurement of contact forces, aiding in the evaluation of mechanical properties in biological samples and flexible materials. Advantages of the developed sensor include its high sensitivity, compact size, ease of integration with micro-electromechanical systems, considerable deflection capacity for contour analysis, straightforward operational principle, and broad dynamic range. We anticipate that this new sensing approach will prove extremely valuable in precision biomedical and materials science research.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2024.3451472</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological properties ; Biomedical materials ; Contact force ; Copper wire ; Elastic deformation ; Fabry–Perot (F–P) interferometer ; femtosecond laser ; Fiber gratings ; Fiber optics ; Finite element method ; Force ; Materials science ; Mechanical properties ; Microelectromechanical systems ; Modulus of elasticity ; optical fiber force sensor ; Optical fiber sensors ; Optical fibers ; Probes ; Sensitivity ; Sensitivity analysis ; Sensors ; Three dimensional printing ; two-photon polymerization (TPP)</subject><ispartof>Journal of lightwave technology, 2025-01, Vol.43 (1), p.383-389</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1266-1c68bfa500dfaa5212d3e4ff0985c54121864e6cc2c8249598755a635e63cbbd3</cites><orcidid>0009-0008-4732-7381 ; 0000-0002-8023-7109 ; 0000-0003-1556-0222 ; 0000-0003-0239-6144 ; 0000-0002-6453-6790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10659065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10659065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zheng, Rongcheng</creatorcontrib><creatorcontrib>Peng, Sisu</creatorcontrib><creatorcontrib>Xin, Zixuan</creatorcontrib><creatorcontrib>Xu, Guodong</creatorcontrib><creatorcontrib>Wei, Heming</creatorcontrib><creatorcontrib>Caucheteur, Christophe</creatorcontrib><creatorcontrib>Hu, Xuehao</creatorcontrib><creatorcontrib>Qu, Hang</creatorcontrib><title>Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these sensors incorporates Fabry-Perot (F-P) interferometric elements combined with elastic supporting brackets that compress under minimal forces. Our results indicated a sensitivity of 0.185 nm/μN for the probes, with a measurement capability extending beyond 100 μN. We also performed numerical simulations using the finite element method to verify the deformation of F-P cavities due to applied forces. As a proof-of-principle demonstration, we used the microforce probe to measure the Young's modulus of a copper wire. This novel microforce sensor is designed for the precise measurement of contact forces, aiding in the evaluation of mechanical properties in biological samples and flexible materials. Advantages of the developed sensor include its high sensitivity, compact size, ease of integration with micro-electromechanical systems, considerable deflection capacity for contour analysis, straightforward operational principle, and broad dynamic range. We anticipate that this new sensing approach will prove extremely valuable in precision biomedical and materials science research.</description><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>Contact force</subject><subject>Copper wire</subject><subject>Elastic deformation</subject><subject>Fabry–Perot (F–P) interferometer</subject><subject>femtosecond laser</subject><subject>Fiber gratings</subject><subject>Fiber optics</subject><subject>Finite element method</subject><subject>Force</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Microelectromechanical systems</subject><subject>Modulus of elasticity</subject><subject>optical fiber force sensor</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Probes</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensors</subject><subject>Three dimensional printing</subject><subject>two-photon polymerization (TPP)</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYjePXjYxPNiv6bbPRoiolkDiXhuumWqJchiu5jw7y2Bg4fJXJ53Ph5CbhkdMUbrh9dmMeKUy5GQwGTFz8iAAeiScybOyYBWQpS64vKSXKW0opRJqasBqafh82u9L95xk0IffrGYhBZjOdv2wRUT28Z9OcfY9cVbcLHzXXRYzGPX4jW58Had8ObUh-Rj8rQYT8tm9vwyfmxKx7hSJXNKt94CpUtvLXDGlwKl97TW4EAyzrSSqJzjTnNZQ60rAKsEoBKubZdiSO6Pc7ex-9lh6s2q28VNXmlEfhS4AgaZokcqH5lSRG-2MXzbuDeMmoMgkwWZgyBzEpQjd8dIQMR_uII6l_gDKJdfnw</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Liu, Yang</creator><creator>Zheng, Rongcheng</creator><creator>Peng, Sisu</creator><creator>Xin, Zixuan</creator><creator>Xu, Guodong</creator><creator>Wei, Heming</creator><creator>Caucheteur, Christophe</creator><creator>Hu, Xuehao</creator><creator>Qu, Hang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-4732-7381</orcidid><orcidid>https://orcid.org/0000-0002-8023-7109</orcidid><orcidid>https://orcid.org/0000-0003-1556-0222</orcidid><orcidid>https://orcid.org/0000-0003-0239-6144</orcidid><orcidid>https://orcid.org/0000-0002-6453-6790</orcidid></search><sort><creationdate>20250101</creationdate><title>Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe</title><author>Liu, Yang ; Zheng, Rongcheng ; Peng, Sisu ; Xin, Zixuan ; Xu, Guodong ; Wei, Heming ; Caucheteur, Christophe ; Hu, Xuehao ; Qu, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1266-1c68bfa500dfaa5212d3e4ff0985c54121864e6cc2c8249598755a635e63cbbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>Contact force</topic><topic>Copper wire</topic><topic>Elastic deformation</topic><topic>Fabry–Perot (F–P) interferometer</topic><topic>femtosecond laser</topic><topic>Fiber gratings</topic><topic>Fiber optics</topic><topic>Finite element method</topic><topic>Force</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Microelectromechanical systems</topic><topic>Modulus of elasticity</topic><topic>optical fiber force sensor</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Probes</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensors</topic><topic>Three dimensional printing</topic><topic>two-photon polymerization (TPP)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zheng, Rongcheng</creatorcontrib><creatorcontrib>Peng, Sisu</creatorcontrib><creatorcontrib>Xin, Zixuan</creatorcontrib><creatorcontrib>Xu, Guodong</creatorcontrib><creatorcontrib>Wei, Heming</creatorcontrib><creatorcontrib>Caucheteur, Christophe</creatorcontrib><creatorcontrib>Hu, Xuehao</creatorcontrib><creatorcontrib>Qu, Hang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Yang</au><au>Zheng, Rongcheng</au><au>Peng, Sisu</au><au>Xin, Zixuan</au><au>Xu, Guodong</au><au>Wei, Heming</au><au>Caucheteur, Christophe</au><au>Hu, Xuehao</au><au>Qu, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>43</volume><issue>1</issue><spage>383</spage><epage>389</epage><pages>383-389</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>In this paper, we report fabrication of highly sensitive nano- and micro-force probes on the end facet of optical fibers using two-photon-polymerization (TPP) 3D printing technique. These probes are tailored to accurately detect forces at the nano- and micro-Newton scales. The architecture of these sensors incorporates Fabry-Perot (F-P) interferometric elements combined with elastic supporting brackets that compress under minimal forces. Our results indicated a sensitivity of 0.185 nm/μN for the probes, with a measurement capability extending beyond 100 μN. We also performed numerical simulations using the finite element method to verify the deformation of F-P cavities due to applied forces. As a proof-of-principle demonstration, we used the microforce probe to measure the Young's modulus of a copper wire. This novel microforce sensor is designed for the precise measurement of contact forces, aiding in the evaluation of mechanical properties in biological samples and flexible materials. Advantages of the developed sensor include its high sensitivity, compact size, ease of integration with micro-electromechanical systems, considerable deflection capacity for contour analysis, straightforward operational principle, and broad dynamic range. We anticipate that this new sensing approach will prove extremely valuable in precision biomedical and materials science research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2024.3451472</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0008-4732-7381</orcidid><orcidid>https://orcid.org/0000-0002-8023-7109</orcidid><orcidid>https://orcid.org/0000-0003-1556-0222</orcidid><orcidid>https://orcid.org/0000-0003-0239-6144</orcidid><orcidid>https://orcid.org/0000-0002-6453-6790</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2025-01, Vol.43 (1), p.383-389
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_10659065
source IEEE Electronic Library (IEL)
subjects Biological properties
Biomedical materials
Contact force
Copper wire
Elastic deformation
Fabry–Perot (F–P) interferometer
femtosecond laser
Fiber gratings
Fiber optics
Finite element method
Force
Materials science
Mechanical properties
Microelectromechanical systems
Modulus of elasticity
optical fiber force sensor
Optical fiber sensors
Optical fibers
Probes
Sensitivity
Sensitivity analysis
Sensors
Three dimensional printing
two-photon polymerization (TPP)
title Highly Sensitive Fiber-Optic Fabry-Perot Microforce Probe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Sensitive%20Fiber-Optic%20Fabry-Perot%20Microforce%20Probe&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Liu,%20Yang&rft.date=2025-01-01&rft.volume=43&rft.issue=1&rft.spage=383&rft.epage=389&rft.pages=383-389&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2024.3451472&rft_dat=%3Cproquest_RIE%3E3147526515%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147526515&rft_id=info:pmid/&rft_ieee_id=10659065&rfr_iscdi=true