Modeling Practical Multi-Center-of-Projection Using Ellipsoid

Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.122328-122339
Hauptverfasser: Lee, Soohyun, Yoon, Junyoung, Ho Lee, Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122339
container_issue
container_start_page 122328
container_title IEEE access
container_volume 12
creator Lee, Soohyun
Yoon, Junyoung
Ho Lee, Joo
description Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections. Our ellipsoidal 3D projection model comprises an ellipsoid and an axis-aligned geometry such as a line or a plane. By linearly mapping these two geometries along their principal axes, our model enables us to explore the continuous domain of projective ray fields while taking advantage of the anisotropy in ellipsoids. We introduce the intrinsic characteristic of our projection field, called the ellipse property, that enables testing isomorphism with other projection models. We prove the difference between ours and the catadioptric projection model employing an elliptic mirror. Besides, we propose a perspectivity metric for the intuitive control over the parameter space. We present both forward and backward projections of our model, demonstrating its applicability across several visual applications, ranging from image synthesis to scene reconstruction.
doi_str_mv 10.1109/ACCESS.2024.3451502
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10654786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10654786</ieee_id><doaj_id>oai_doaj_org_article_6ce91a050a29402e9905adf374be957b</doaj_id><sourcerecordid>3102970159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-11d34d3107dbf35ec91e484251bff930b32b009d9165dc80a66b487a886d2adb3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKVfAIdKnFP8jn3gUEUFKrWiUunZcmKnchTiYqcH_h6HVIi97Gp3ZjweAO4RXCAE5dOyKFb7_QJDTBeEMsQgvgITjLjMCCP8-t98C2YxNjCVSCuWT8Dz1hvbuu443wVd9a7S7Xx7bnuXFbbrbch8ne2Cb2y6-W5-iAN01bbuFL0zd-Cm1m20s0ufgsPL6qN4yzbvr-tiuckqLGSfIWQINQTB3JQ1YbaSyFJBMUNlXUsCS4JLCKWRiDNTCag5L6nItRDcYG1KMgXrUdd43ahTcJ86fCuvnfpd-HBUOiTzrVW8shJpyKDGkkJspYRMm5rktLTpx4PW46h1Cv7rbGOvGn8OXbKvkkMsc4iYTCgyoqrgYwy2_nsVQTXErsbY1RC7usSeWA8jy1lr_zE4o7ng5AcV8Xx2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102970159</pqid></control><display><type>article</type><title>Modeling Practical Multi-Center-of-Projection Using Ellipsoid</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Soohyun ; Yoon, Junyoung ; Ho Lee, Joo</creator><creatorcontrib>Lee, Soohyun ; Yoon, Junyoung ; Ho Lee, Joo</creatorcontrib><description>Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections. Our ellipsoidal 3D projection model comprises an ellipsoid and an axis-aligned geometry such as a line or a plane. By linearly mapping these two geometries along their principal axes, our model enables us to explore the continuous domain of projective ray fields while taking advantage of the anisotropy in ellipsoids. We introduce the intrinsic characteristic of our projection field, called the ellipse property, that enables testing isomorphism with other projection models. We prove the difference between ours and the catadioptric projection model employing an elliptic mirror. Besides, we propose a perspectivity metric for the intuitive control over the parameter space. We present both forward and backward projections of our model, demonstrating its applicability across several visual applications, ranging from image synthesis to scene reconstruction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3451502</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anisotropy ; Cameras ; Ellipsoids ; Geometric modeling ; Image reconstruction ; Isomorphism ; Mathematical models ; Navigation ; Orthography ; Projection geometry ; Projection model ; rendering ; scene contraction ; Solid modeling ; Three-dimensional displays</subject><ispartof>IEEE access, 2024, Vol.12, p.122328-122339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-11d34d3107dbf35ec91e484251bff930b32b009d9165dc80a66b487a886d2adb3</cites><orcidid>0000-0001-7307-7744 ; 0009-0000-8158-0622 ; 0009-0003-5607-6565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10654786$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Lee, Soohyun</creatorcontrib><creatorcontrib>Yoon, Junyoung</creatorcontrib><creatorcontrib>Ho Lee, Joo</creatorcontrib><title>Modeling Practical Multi-Center-of-Projection Using Ellipsoid</title><title>IEEE access</title><addtitle>Access</addtitle><description>Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections. Our ellipsoidal 3D projection model comprises an ellipsoid and an axis-aligned geometry such as a line or a plane. By linearly mapping these two geometries along their principal axes, our model enables us to explore the continuous domain of projective ray fields while taking advantage of the anisotropy in ellipsoids. We introduce the intrinsic characteristic of our projection field, called the ellipse property, that enables testing isomorphism with other projection models. We prove the difference between ours and the catadioptric projection model employing an elliptic mirror. Besides, we propose a perspectivity metric for the intuitive control over the parameter space. We present both forward and backward projections of our model, demonstrating its applicability across several visual applications, ranging from image synthesis to scene reconstruction.</description><subject>Anisotropy</subject><subject>Cameras</subject><subject>Ellipsoids</subject><subject>Geometric modeling</subject><subject>Image reconstruction</subject><subject>Isomorphism</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>Orthography</subject><subject>Projection geometry</subject><subject>Projection model</subject><subject>rendering</subject><subject>scene contraction</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKVfAIdKnFP8jn3gUEUFKrWiUunZcmKnchTiYqcH_h6HVIi97Gp3ZjweAO4RXCAE5dOyKFb7_QJDTBeEMsQgvgITjLjMCCP8-t98C2YxNjCVSCuWT8Dz1hvbuu443wVd9a7S7Xx7bnuXFbbrbch8ne2Cb2y6-W5-iAN01bbuFL0zd-Cm1m20s0ufgsPL6qN4yzbvr-tiuckqLGSfIWQINQTB3JQ1YbaSyFJBMUNlXUsCS4JLCKWRiDNTCag5L6nItRDcYG1KMgXrUdd43ahTcJ86fCuvnfpd-HBUOiTzrVW8shJpyKDGkkJspYRMm5rktLTpx4PW46h1Cv7rbGOvGn8OXbKvkkMsc4iYTCgyoqrgYwy2_nsVQTXErsbY1RC7usSeWA8jy1lr_zE4o7ng5AcV8Xx2</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Soohyun</creator><creator>Yoon, Junyoung</creator><creator>Ho Lee, Joo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7307-7744</orcidid><orcidid>https://orcid.org/0009-0000-8158-0622</orcidid><orcidid>https://orcid.org/0009-0003-5607-6565</orcidid></search><sort><creationdate>2024</creationdate><title>Modeling Practical Multi-Center-of-Projection Using Ellipsoid</title><author>Lee, Soohyun ; Yoon, Junyoung ; Ho Lee, Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-11d34d3107dbf35ec91e484251bff930b32b009d9165dc80a66b487a886d2adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Cameras</topic><topic>Ellipsoids</topic><topic>Geometric modeling</topic><topic>Image reconstruction</topic><topic>Isomorphism</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>Orthography</topic><topic>Projection geometry</topic><topic>Projection model</topic><topic>rendering</topic><topic>scene contraction</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Soohyun</creatorcontrib><creatorcontrib>Yoon, Junyoung</creatorcontrib><creatorcontrib>Ho Lee, Joo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Soohyun</au><au>Yoon, Junyoung</au><au>Ho Lee, Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Practical Multi-Center-of-Projection Using Ellipsoid</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>122328</spage><epage>122339</epage><pages>122328-122339</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections. Our ellipsoidal 3D projection model comprises an ellipsoid and an axis-aligned geometry such as a line or a plane. By linearly mapping these two geometries along their principal axes, our model enables us to explore the continuous domain of projective ray fields while taking advantage of the anisotropy in ellipsoids. We introduce the intrinsic characteristic of our projection field, called the ellipse property, that enables testing isomorphism with other projection models. We prove the difference between ours and the catadioptric projection model employing an elliptic mirror. Besides, we propose a perspectivity metric for the intuitive control over the parameter space. We present both forward and backward projections of our model, demonstrating its applicability across several visual applications, ranging from image synthesis to scene reconstruction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3451502</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7307-7744</orcidid><orcidid>https://orcid.org/0009-0000-8158-0622</orcidid><orcidid>https://orcid.org/0009-0003-5607-6565</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.122328-122339
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10654786
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Anisotropy
Cameras
Ellipsoids
Geometric modeling
Image reconstruction
Isomorphism
Mathematical models
Navigation
Orthography
Projection geometry
Projection model
rendering
scene contraction
Solid modeling
Three-dimensional displays
title Modeling Practical Multi-Center-of-Projection Using Ellipsoid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Practical%20Multi-Center-of-Projection%20Using%20Ellipsoid&rft.jtitle=IEEE%20access&rft.au=Lee,%20Soohyun&rft.date=2024&rft.volume=12&rft.spage=122328&rft.epage=122339&rft.pages=122328-122339&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3451502&rft_dat=%3Cproquest_ieee_%3E3102970159%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102970159&rft_id=info:pmid/&rft_ieee_id=10654786&rft_doaj_id=oai_doaj_org_article_6ce91a050a29402e9905adf374be957b&rfr_iscdi=true