Modeling Practical Multi-Center-of-Projection Using Ellipsoid
Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.122328-122339 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122339 |
---|---|
container_issue | |
container_start_page | 122328 |
container_title | IEEE access |
container_volume | 12 |
creator | Lee, Soohyun Yoon, Junyoung Ho Lee, Joo |
description | Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections. Our ellipsoidal 3D projection model comprises an ellipsoid and an axis-aligned geometry such as a line or a plane. By linearly mapping these two geometries along their principal axes, our model enables us to explore the continuous domain of projective ray fields while taking advantage of the anisotropy in ellipsoids. We introduce the intrinsic characteristic of our projection field, called the ellipse property, that enables testing isomorphism with other projection models. We prove the difference between ours and the catadioptric projection model employing an elliptic mirror. Besides, we propose a perspectivity metric for the intuitive control over the parameter space. We present both forward and backward projections of our model, demonstrating its applicability across several visual applications, ranging from image synthesis to scene reconstruction. |
doi_str_mv | 10.1109/ACCESS.2024.3451502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10654786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10654786</ieee_id><doaj_id>oai_doaj_org_article_6ce91a050a29402e9905adf374be957b</doaj_id><sourcerecordid>3102970159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-11d34d3107dbf35ec91e484251bff930b32b009d9165dc80a66b487a886d2adb3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKVfAIdKnFP8jn3gUEUFKrWiUunZcmKnchTiYqcH_h6HVIi97Gp3ZjweAO4RXCAE5dOyKFb7_QJDTBeEMsQgvgITjLjMCCP8-t98C2YxNjCVSCuWT8Dz1hvbuu443wVd9a7S7Xx7bnuXFbbrbch8ne2Cb2y6-W5-iAN01bbuFL0zd-Cm1m20s0ufgsPL6qN4yzbvr-tiuckqLGSfIWQINQTB3JQ1YbaSyFJBMUNlXUsCS4JLCKWRiDNTCag5L6nItRDcYG1KMgXrUdd43ahTcJ86fCuvnfpd-HBUOiTzrVW8shJpyKDGkkJspYRMm5rktLTpx4PW46h1Cv7rbGOvGn8OXbKvkkMsc4iYTCgyoqrgYwy2_nsVQTXErsbY1RC7usSeWA8jy1lr_zE4o7ng5AcV8Xx2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102970159</pqid></control><display><type>article</type><title>Modeling Practical Multi-Center-of-Projection Using Ellipsoid</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Soohyun ; Yoon, Junyoung ; Ho Lee, Joo</creator><creatorcontrib>Lee, Soohyun ; Yoon, Junyoung ; Ho Lee, Joo</creatorcontrib><description>Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections. Our ellipsoidal 3D projection model comprises an ellipsoid and an axis-aligned geometry such as a line or a plane. By linearly mapping these two geometries along their principal axes, our model enables us to explore the continuous domain of projective ray fields while taking advantage of the anisotropy in ellipsoids. We introduce the intrinsic characteristic of our projection field, called the ellipse property, that enables testing isomorphism with other projection models. We prove the difference between ours and the catadioptric projection model employing an elliptic mirror. Besides, we propose a perspectivity metric for the intuitive control over the parameter space. We present both forward and backward projections of our model, demonstrating its applicability across several visual applications, ranging from image synthesis to scene reconstruction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3451502</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Anisotropy ; Cameras ; Ellipsoids ; Geometric modeling ; Image reconstruction ; Isomorphism ; Mathematical models ; Navigation ; Orthography ; Projection geometry ; Projection model ; rendering ; scene contraction ; Solid modeling ; Three-dimensional displays</subject><ispartof>IEEE access, 2024, Vol.12, p.122328-122339</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-11d34d3107dbf35ec91e484251bff930b32b009d9165dc80a66b487a886d2adb3</cites><orcidid>0000-0001-7307-7744 ; 0009-0000-8158-0622 ; 0009-0003-5607-6565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10654786$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Lee, Soohyun</creatorcontrib><creatorcontrib>Yoon, Junyoung</creatorcontrib><creatorcontrib>Ho Lee, Joo</creatorcontrib><title>Modeling Practical Multi-Center-of-Projection Using Ellipsoid</title><title>IEEE access</title><addtitle>Access</addtitle><description>Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections. Our ellipsoidal 3D projection model comprises an ellipsoid and an axis-aligned geometry such as a line or a plane. By linearly mapping these two geometries along their principal axes, our model enables us to explore the continuous domain of projective ray fields while taking advantage of the anisotropy in ellipsoids. We introduce the intrinsic characteristic of our projection field, called the ellipse property, that enables testing isomorphism with other projection models. We prove the difference between ours and the catadioptric projection model employing an elliptic mirror. Besides, we propose a perspectivity metric for the intuitive control over the parameter space. We present both forward and backward projections of our model, demonstrating its applicability across several visual applications, ranging from image synthesis to scene reconstruction.</description><subject>Anisotropy</subject><subject>Cameras</subject><subject>Ellipsoids</subject><subject>Geometric modeling</subject><subject>Image reconstruction</subject><subject>Isomorphism</subject><subject>Mathematical models</subject><subject>Navigation</subject><subject>Orthography</subject><subject>Projection geometry</subject><subject>Projection model</subject><subject>rendering</subject><subject>scene contraction</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwzAQtBBIVKVfAIdKnFP8jn3gUEUFKrWiUunZcmKnchTiYqcH_h6HVIi97Gp3ZjweAO4RXCAE5dOyKFb7_QJDTBeEMsQgvgITjLjMCCP8-t98C2YxNjCVSCuWT8Dz1hvbuu443wVd9a7S7Xx7bnuXFbbrbch8ne2Cb2y6-W5-iAN01bbuFL0zd-Cm1m20s0ufgsPL6qN4yzbvr-tiuckqLGSfIWQINQTB3JQ1YbaSyFJBMUNlXUsCS4JLCKWRiDNTCag5L6nItRDcYG1KMgXrUdd43ahTcJ86fCuvnfpd-HBUOiTzrVW8shJpyKDGkkJspYRMm5rktLTpx4PW46h1Cv7rbGOvGn8OXbKvkkMsc4iYTCgyoqrgYwy2_nsVQTXErsbY1RC7usSeWA8jy1lr_zE4o7ng5AcV8Xx2</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lee, Soohyun</creator><creator>Yoon, Junyoung</creator><creator>Ho Lee, Joo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7307-7744</orcidid><orcidid>https://orcid.org/0009-0000-8158-0622</orcidid><orcidid>https://orcid.org/0009-0003-5607-6565</orcidid></search><sort><creationdate>2024</creationdate><title>Modeling Practical Multi-Center-of-Projection Using Ellipsoid</title><author>Lee, Soohyun ; Yoon, Junyoung ; Ho Lee, Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-11d34d3107dbf35ec91e484251bff930b32b009d9165dc80a66b487a886d2adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Cameras</topic><topic>Ellipsoids</topic><topic>Geometric modeling</topic><topic>Image reconstruction</topic><topic>Isomorphism</topic><topic>Mathematical models</topic><topic>Navigation</topic><topic>Orthography</topic><topic>Projection geometry</topic><topic>Projection model</topic><topic>rendering</topic><topic>scene contraction</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Soohyun</creatorcontrib><creatorcontrib>Yoon, Junyoung</creatorcontrib><creatorcontrib>Ho Lee, Joo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Soohyun</au><au>Yoon, Junyoung</au><au>Ho Lee, Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Practical Multi-Center-of-Projection Using Ellipsoid</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>122328</spage><epage>122339</epage><pages>122328-122339</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Traditional 3D projection models, such as perspective and orthographic projection, are limited to two types of projective ray fields: rays passing through a single point and parallel rays. In this paper, we introduce an ellipsoidal-based 3D projection model to overcome the sparsity of 3D projections. Our ellipsoidal 3D projection model comprises an ellipsoid and an axis-aligned geometry such as a line or a plane. By linearly mapping these two geometries along their principal axes, our model enables us to explore the continuous domain of projective ray fields while taking advantage of the anisotropy in ellipsoids. We introduce the intrinsic characteristic of our projection field, called the ellipse property, that enables testing isomorphism with other projection models. We prove the difference between ours and the catadioptric projection model employing an elliptic mirror. Besides, we propose a perspectivity metric for the intuitive control over the parameter space. We present both forward and backward projections of our model, demonstrating its applicability across several visual applications, ranging from image synthesis to scene reconstruction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3451502</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7307-7744</orcidid><orcidid>https://orcid.org/0009-0000-8158-0622</orcidid><orcidid>https://orcid.org/0009-0003-5607-6565</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.122328-122339 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10654786 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Anisotropy Cameras Ellipsoids Geometric modeling Image reconstruction Isomorphism Mathematical models Navigation Orthography Projection geometry Projection model rendering scene contraction Solid modeling Three-dimensional displays |
title | Modeling Practical Multi-Center-of-Projection Using Ellipsoid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Practical%20Multi-Center-of-Projection%20Using%20Ellipsoid&rft.jtitle=IEEE%20access&rft.au=Lee,%20Soohyun&rft.date=2024&rft.volume=12&rft.spage=122328&rft.epage=122339&rft.pages=122328-122339&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3451502&rft_dat=%3Cproquest_ieee_%3E3102970159%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102970159&rft_id=info:pmid/&rft_ieee_id=10654786&rft_doaj_id=oai_doaj_org_article_6ce91a050a29402e9905adf374be957b&rfr_iscdi=true |