Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network

Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.184442-184455
Hauptverfasser: Liu, Weisi, Pan, Xiaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184455
container_issue
container_start_page 184442
container_title IEEE access
container_volume 12
creator Liu, Weisi
Pan, Xiaogang
description Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural assemblies in causal inference remain unclear. In this paper, a Bayesian spiking neural network is designed with the entropy-maximization (EM) method to simulate causal inference of visual hidden cues. Hidden cues determine types of visual images in simulations. With images received, the network generates neural spiking trains and modifies its plastic weights with the EM method with constraint conditions. After modifications, the network can identify hidden cues with induced neural responses. Over repeated simulations, similarity and responsivity of neural activities are measured to determine neural assembles. Through principal component analysis of neural responses, contributions of neural assembles in causal inference are explored. During identifications of given stimuli, different neural assemblies make various time-varying contributions. With acceptable performance in causal inference of designed stimuli, the network simulates the emergence of neural assembles and measures their contributions. The Bayesian spiking neural network with the EM method provides the possible framework to explore effects of neural assembles in cause inference.
doi_str_mv 10.1109/ACCESS.2024.3450551
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10649571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10649571</ieee_id><doaj_id>oai_doaj_org_article_108e1f874c1549fe8a66833b605c2c2c</doaj_id><sourcerecordid>3144175615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2041-7464e59d9acb86cac9e02f8b1d6dd054a7114b0efdb8c97fdcb7b7f2bc73fa1f3</originalsourceid><addsrcrecordid>eNpNkU9vEzEQxVeoSFSlnwAOljhv8Kz_7R7TVQqRQjkUzpbtHVOnyTrYG7Xh0-OyEarn4NGbec-WflX1AegCgHafl32_ur9fNLThC8YFFQLeVJcNyK5mgsmLV_276jrnLS2nLZJQl9XDynt0UybRkzs8JrMjy5xxb3eYSRhJb465aOvRY8LRIbkxGQcSR2JGshqnFA-n-pt5Dvvwx0yh6DfmhDmU6TnuDqenmB7fV2-92WW8Pt9X1c_b1Y_-a735_mXdLze1ayiHWnHJUXRDZ5xtpTOuQ9r41sIgh4EKbhQAtxT9YFvXKT84q6zyjXWKeQOeXVXrOXeIZqsPKexNOulogv4nxPRLmzQFt0MNtEXwreIOBO88tkbKljErqXBNqZL1ac46pPj7iHnS23hMY_m-ZsA5KCFBlC02b7kUc07o_78KVL8Q0jMh_UJInwkV18fZFRDxlUPywgXYX80bjTE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144175615</pqid></control><display><type>article</type><title>Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Weisi ; Pan, Xiaogang</creator><creatorcontrib>Liu, Weisi ; Pan, Xiaogang</creatorcontrib><description>Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural assemblies in causal inference remain unclear. In this paper, a Bayesian spiking neural network is designed with the entropy-maximization (EM) method to simulate causal inference of visual hidden cues. Hidden cues determine types of visual images in simulations. With images received, the network generates neural spiking trains and modifies its plastic weights with the EM method with constraint conditions. After modifications, the network can identify hidden cues with induced neural responses. Over repeated simulations, similarity and responsivity of neural activities are measured to determine neural assembles. Through principal component analysis of neural responses, contributions of neural assembles in causal inference are explored. During identifications of given stimuli, different neural assemblies make various time-varying contributions. With acceptable performance in causal inference of designed stimuli, the network simulates the emergence of neural assembles and measures their contributions. The Bayesian spiking neural network with the EM method provides the possible framework to explore effects of neural assembles in cause inference.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3450551</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Assemblies ; Assembly ; Bayes methods ; Bayesian analysis ; Bayesian inference ; Causal inference ; Cause effect analysis ; Entropy ; entropy-maximization method ; Maximization ; Nervous system ; Neural networks ; Optimization ; Plastics ; Principal components analysis ; Spiking ; spiking neural network ; Spiking neural networks ; Statistical inference ; Stimuli ; Visualization</subject><ispartof>IEEE access, 2024, Vol.12, p.184442-184455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2041-7464e59d9acb86cac9e02f8b1d6dd054a7114b0efdb8c97fdcb7b7f2bc73fa1f3</cites><orcidid>0000-0002-8264-9641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10649571$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Weisi</creatorcontrib><creatorcontrib>Pan, Xiaogang</creatorcontrib><title>Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural assemblies in causal inference remain unclear. In this paper, a Bayesian spiking neural network is designed with the entropy-maximization (EM) method to simulate causal inference of visual hidden cues. Hidden cues determine types of visual images in simulations. With images received, the network generates neural spiking trains and modifies its plastic weights with the EM method with constraint conditions. After modifications, the network can identify hidden cues with induced neural responses. Over repeated simulations, similarity and responsivity of neural activities are measured to determine neural assembles. Through principal component analysis of neural responses, contributions of neural assembles in causal inference are explored. During identifications of given stimuli, different neural assemblies make various time-varying contributions. With acceptable performance in causal inference of designed stimuli, the network simulates the emergence of neural assembles and measures their contributions. The Bayesian spiking neural network with the EM method provides the possible framework to explore effects of neural assembles in cause inference.</description><subject>Assemblies</subject><subject>Assembly</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Causal inference</subject><subject>Cause effect analysis</subject><subject>Entropy</subject><subject>entropy-maximization method</subject><subject>Maximization</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Plastics</subject><subject>Principal components analysis</subject><subject>Spiking</subject><subject>spiking neural network</subject><subject>Spiking neural networks</subject><subject>Statistical inference</subject><subject>Stimuli</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9vEzEQxVeoSFSlnwAOljhv8Kz_7R7TVQqRQjkUzpbtHVOnyTrYG7Xh0-OyEarn4NGbec-WflX1AegCgHafl32_ur9fNLThC8YFFQLeVJcNyK5mgsmLV_276jrnLS2nLZJQl9XDynt0UybRkzs8JrMjy5xxb3eYSRhJb465aOvRY8LRIbkxGQcSR2JGshqnFA-n-pt5Dvvwx0yh6DfmhDmU6TnuDqenmB7fV2-92WW8Pt9X1c_b1Y_-a735_mXdLze1ayiHWnHJUXRDZ5xtpTOuQ9r41sIgh4EKbhQAtxT9YFvXKT84q6zyjXWKeQOeXVXrOXeIZqsPKexNOulogv4nxPRLmzQFt0MNtEXwreIOBO88tkbKljErqXBNqZL1ac46pPj7iHnS23hMY_m-ZsA5KCFBlC02b7kUc07o_78KVL8Q0jMh_UJInwkV18fZFRDxlUPywgXYX80bjTE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Weisi</creator><creator>Pan, Xiaogang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8264-9641</orcidid></search><sort><creationdate>2024</creationdate><title>Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network</title><author>Liu, Weisi ; Pan, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2041-7464e59d9acb86cac9e02f8b1d6dd054a7114b0efdb8c97fdcb7b7f2bc73fa1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assemblies</topic><topic>Assembly</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Causal inference</topic><topic>Cause effect analysis</topic><topic>Entropy</topic><topic>entropy-maximization method</topic><topic>Maximization</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Plastics</topic><topic>Principal components analysis</topic><topic>Spiking</topic><topic>spiking neural network</topic><topic>Spiking neural networks</topic><topic>Statistical inference</topic><topic>Stimuli</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Weisi</creatorcontrib><creatorcontrib>Pan, Xiaogang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Weisi</au><au>Pan, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>184442</spage><epage>184455</epage><pages>184442-184455</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural assemblies in causal inference remain unclear. In this paper, a Bayesian spiking neural network is designed with the entropy-maximization (EM) method to simulate causal inference of visual hidden cues. Hidden cues determine types of visual images in simulations. With images received, the network generates neural spiking trains and modifies its plastic weights with the EM method with constraint conditions. After modifications, the network can identify hidden cues with induced neural responses. Over repeated simulations, similarity and responsivity of neural activities are measured to determine neural assembles. Through principal component analysis of neural responses, contributions of neural assembles in causal inference are explored. During identifications of given stimuli, different neural assemblies make various time-varying contributions. With acceptable performance in causal inference of designed stimuli, the network simulates the emergence of neural assembles and measures their contributions. The Bayesian spiking neural network with the EM method provides the possible framework to explore effects of neural assembles in cause inference.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3450551</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8264-9641</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.184442-184455
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10649571
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Assemblies
Assembly
Bayes methods
Bayesian analysis
Bayesian inference
Causal inference
Cause effect analysis
Entropy
entropy-maximization method
Maximization
Nervous system
Neural networks
Optimization
Plastics
Principal components analysis
Spiking
spiking neural network
Spiking neural networks
Statistical inference
Stimuli
Visualization
title Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Neural%20Assembles%20in%20Causal%20Inference%20Based%20on%20an%20Entropy-Maximization%20Bayesian%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Liu,%20Weisi&rft.date=2024&rft.volume=12&rft.spage=184442&rft.epage=184455&rft.pages=184442-184455&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3450551&rft_dat=%3Cproquest_ieee_%3E3144175615%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144175615&rft_id=info:pmid/&rft_ieee_id=10649571&rft_doaj_id=oai_doaj_org_article_108e1f874c1549fe8a66833b605c2c2c&rfr_iscdi=true