Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network
Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural ass...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.184442-184455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184455 |
---|---|
container_issue | |
container_start_page | 184442 |
container_title | IEEE access |
container_volume | 12 |
creator | Liu, Weisi Pan, Xiaogang |
description | Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural assemblies in causal inference remain unclear. In this paper, a Bayesian spiking neural network is designed with the entropy-maximization (EM) method to simulate causal inference of visual hidden cues. Hidden cues determine types of visual images in simulations. With images received, the network generates neural spiking trains and modifies its plastic weights with the EM method with constraint conditions. After modifications, the network can identify hidden cues with induced neural responses. Over repeated simulations, similarity and responsivity of neural activities are measured to determine neural assembles. Through principal component analysis of neural responses, contributions of neural assembles in causal inference are explored. During identifications of given stimuli, different neural assemblies make various time-varying contributions. With acceptable performance in causal inference of designed stimuli, the network simulates the emergence of neural assembles and measures their contributions. The Bayesian spiking neural network with the EM method provides the possible framework to explore effects of neural assembles in cause inference. |
doi_str_mv | 10.1109/ACCESS.2024.3450551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10649571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10649571</ieee_id><doaj_id>oai_doaj_org_article_108e1f874c1549fe8a66833b605c2c2c</doaj_id><sourcerecordid>3144175615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2041-7464e59d9acb86cac9e02f8b1d6dd054a7114b0efdb8c97fdcb7b7f2bc73fa1f3</originalsourceid><addsrcrecordid>eNpNkU9vEzEQxVeoSFSlnwAOljhv8Kz_7R7TVQqRQjkUzpbtHVOnyTrYG7Xh0-OyEarn4NGbec-WflX1AegCgHafl32_ur9fNLThC8YFFQLeVJcNyK5mgsmLV_276jrnLS2nLZJQl9XDynt0UybRkzs8JrMjy5xxb3eYSRhJb465aOvRY8LRIbkxGQcSR2JGshqnFA-n-pt5Dvvwx0yh6DfmhDmU6TnuDqenmB7fV2-92WW8Pt9X1c_b1Y_-a735_mXdLze1ayiHWnHJUXRDZ5xtpTOuQ9r41sIgh4EKbhQAtxT9YFvXKT84q6zyjXWKeQOeXVXrOXeIZqsPKexNOulogv4nxPRLmzQFt0MNtEXwreIOBO88tkbKljErqXBNqZL1ac46pPj7iHnS23hMY_m-ZsA5KCFBlC02b7kUc07o_78KVL8Q0jMh_UJInwkV18fZFRDxlUPywgXYX80bjTE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3144175615</pqid></control><display><type>article</type><title>Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Weisi ; Pan, Xiaogang</creator><creatorcontrib>Liu, Weisi ; Pan, Xiaogang</creatorcontrib><description>Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural assemblies in causal inference remain unclear. In this paper, a Bayesian spiking neural network is designed with the entropy-maximization (EM) method to simulate causal inference of visual hidden cues. Hidden cues determine types of visual images in simulations. With images received, the network generates neural spiking trains and modifies its plastic weights with the EM method with constraint conditions. After modifications, the network can identify hidden cues with induced neural responses. Over repeated simulations, similarity and responsivity of neural activities are measured to determine neural assembles. Through principal component analysis of neural responses, contributions of neural assembles in causal inference are explored. During identifications of given stimuli, different neural assemblies make various time-varying contributions. With acceptable performance in causal inference of designed stimuli, the network simulates the emergence of neural assembles and measures their contributions. The Bayesian spiking neural network with the EM method provides the possible framework to explore effects of neural assembles in cause inference.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3450551</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Assemblies ; Assembly ; Bayes methods ; Bayesian analysis ; Bayesian inference ; Causal inference ; Cause effect analysis ; Entropy ; entropy-maximization method ; Maximization ; Nervous system ; Neural networks ; Optimization ; Plastics ; Principal components analysis ; Spiking ; spiking neural network ; Spiking neural networks ; Statistical inference ; Stimuli ; Visualization</subject><ispartof>IEEE access, 2024, Vol.12, p.184442-184455</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2041-7464e59d9acb86cac9e02f8b1d6dd054a7114b0efdb8c97fdcb7b7f2bc73fa1f3</cites><orcidid>0000-0002-8264-9641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10649571$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Weisi</creatorcontrib><creatorcontrib>Pan, Xiaogang</creatorcontrib><title>Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural assemblies in causal inference remain unclear. In this paper, a Bayesian spiking neural network is designed with the entropy-maximization (EM) method to simulate causal inference of visual hidden cues. Hidden cues determine types of visual images in simulations. With images received, the network generates neural spiking trains and modifies its plastic weights with the EM method with constraint conditions. After modifications, the network can identify hidden cues with induced neural responses. Over repeated simulations, similarity and responsivity of neural activities are measured to determine neural assembles. Through principal component analysis of neural responses, contributions of neural assembles in causal inference are explored. During identifications of given stimuli, different neural assemblies make various time-varying contributions. With acceptable performance in causal inference of designed stimuli, the network simulates the emergence of neural assembles and measures their contributions. The Bayesian spiking neural network with the EM method provides the possible framework to explore effects of neural assembles in cause inference.</description><subject>Assemblies</subject><subject>Assembly</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian inference</subject><subject>Causal inference</subject><subject>Cause effect analysis</subject><subject>Entropy</subject><subject>entropy-maximization method</subject><subject>Maximization</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Plastics</subject><subject>Principal components analysis</subject><subject>Spiking</subject><subject>spiking neural network</subject><subject>Spiking neural networks</subject><subject>Statistical inference</subject><subject>Stimuli</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9vEzEQxVeoSFSlnwAOljhv8Kz_7R7TVQqRQjkUzpbtHVOnyTrYG7Xh0-OyEarn4NGbec-WflX1AegCgHafl32_ur9fNLThC8YFFQLeVJcNyK5mgsmLV_276jrnLS2nLZJQl9XDynt0UybRkzs8JrMjy5xxb3eYSRhJb465aOvRY8LRIbkxGQcSR2JGshqnFA-n-pt5Dvvwx0yh6DfmhDmU6TnuDqenmB7fV2-92WW8Pt9X1c_b1Y_-a735_mXdLze1ayiHWnHJUXRDZ5xtpTOuQ9r41sIgh4EKbhQAtxT9YFvXKT84q6zyjXWKeQOeXVXrOXeIZqsPKexNOulogv4nxPRLmzQFt0MNtEXwreIOBO88tkbKljErqXBNqZL1ac46pPj7iHnS23hMY_m-ZsA5KCFBlC02b7kUc07o_78KVL8Q0jMh_UJInwkV18fZFRDxlUPywgXYX80bjTE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Weisi</creator><creator>Pan, Xiaogang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8264-9641</orcidid></search><sort><creationdate>2024</creationdate><title>Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network</title><author>Liu, Weisi ; Pan, Xiaogang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2041-7464e59d9acb86cac9e02f8b1d6dd054a7114b0efdb8c97fdcb7b7f2bc73fa1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assemblies</topic><topic>Assembly</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian inference</topic><topic>Causal inference</topic><topic>Cause effect analysis</topic><topic>Entropy</topic><topic>entropy-maximization method</topic><topic>Maximization</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Plastics</topic><topic>Principal components analysis</topic><topic>Spiking</topic><topic>spiking neural network</topic><topic>Spiking neural networks</topic><topic>Statistical inference</topic><topic>Stimuli</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Weisi</creatorcontrib><creatorcontrib>Pan, Xiaogang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Weisi</au><au>Pan, Xiaogang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>184442</spage><epage>184455</epage><pages>184442-184455</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Causal inference is an important function of the nervous system. To explore causal inference, Bayesian inference performs as the possible framework, mapping neural implementation onto various cortical areas. Neural assembles participate in Bayesian inference. However, the contributions of neural assemblies in causal inference remain unclear. In this paper, a Bayesian spiking neural network is designed with the entropy-maximization (EM) method to simulate causal inference of visual hidden cues. Hidden cues determine types of visual images in simulations. With images received, the network generates neural spiking trains and modifies its plastic weights with the EM method with constraint conditions. After modifications, the network can identify hidden cues with induced neural responses. Over repeated simulations, similarity and responsivity of neural activities are measured to determine neural assembles. Through principal component analysis of neural responses, contributions of neural assembles in causal inference are explored. During identifications of given stimuli, different neural assemblies make various time-varying contributions. With acceptable performance in causal inference of designed stimuli, the network simulates the emergence of neural assembles and measures their contributions. The Bayesian spiking neural network with the EM method provides the possible framework to explore effects of neural assembles in cause inference.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3450551</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8264-9641</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.184442-184455 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10649571 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Assemblies Assembly Bayes methods Bayesian analysis Bayesian inference Causal inference Cause effect analysis Entropy entropy-maximization method Maximization Nervous system Neural networks Optimization Plastics Principal components analysis Spiking spiking neural network Spiking neural networks Statistical inference Stimuli Visualization |
title | Effects of Neural Assembles in Causal Inference Based on an Entropy-Maximization Bayesian Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Neural%20Assembles%20in%20Causal%20Inference%20Based%20on%20an%20Entropy-Maximization%20Bayesian%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Liu,%20Weisi&rft.date=2024&rft.volume=12&rft.spage=184442&rft.epage=184455&rft.pages=184442-184455&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3450551&rft_dat=%3Cproquest_ieee_%3E3144175615%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3144175615&rft_id=info:pmid/&rft_ieee_id=10649571&rft_doaj_id=oai_doaj_org_article_108e1f874c1549fe8a66833b605c2c2c&rfr_iscdi=true |