Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning

Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2024-11, Vol.42 (11), p.3078-3094
Hauptverfasser: Qiao, Li, Gao, Zhen, Boloursaz Mashhadi, Mahdi, Gunduz, Deniz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3094
container_issue 11
container_start_page 3078
container_title IEEE journal on selected areas in communications
container_volume 42
creator Qiao, Li
Gao, Zhen
Boloursaz Mashhadi, Mahdi
Gunduz, Deniz
description Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.
doi_str_mv 10.1109/JSAC.2024.3431572
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10648926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10648926</ieee_id><sourcerecordid>10_1109_JSAC_2024_3431572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-53f04b670ceef551ce731ea91ce609fb1b1783754d4b811d3a1d23fdb535f78e3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgs8gMuntiOnWUV2gIq6gLYIUVOPC5GbVLZbiX-nr4WrGbm6p5ZHELugY0AWPn4-j6uRjnLxYgLDlLlF2QAUmrKGNOXZMAU51QrKK7JTYw_jIEQOh-QrzcTo99h9uSXPplVtthhoOkb6diHrOrXm20yyfdd5vrjvd52vj0mdOKcbz12KZuixWAS2mxil5jN0YTOd8tbcuXMKuLdeQ7J53TyUT3T-WL2Uo3ntAWhE5XcMdEUirWITkpoUXFAU-6XgpWugQaU5koKKxoNYLkBm3NnG8mlUxr5kMDpbxv6GAO6ehP82oTfGlh90FMf9NQHPfVZz555ODEeEf_1C6HLvOB_hitiGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Qiao, Li ; Gao, Zhen ; Boloursaz Mashhadi, Mahdi ; Gunduz, Deniz</creator><creatorcontrib>Qiao, Li ; Gao, Zhen ; Boloursaz Mashhadi, Mahdi ; Gunduz, Deniz</creatorcontrib><description>Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2024.3431572</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial intelligence of things (AIoT) ; Atmospheric modeling ; Computational modeling ; digital over-the-air computation ; distributed optimization ; Edge computing ; federated edge learning ; Federated learning ; Modulation ; Quantization (signal) ; unsourced massive access ; Wireless networks</subject><ispartof>IEEE journal on selected areas in communications, 2024-11, Vol.42 (11), p.3078-3094</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-53f04b670ceef551ce731ea91ce609fb1b1783754d4b811d3a1d23fdb535f78e3</cites><orcidid>0000-0003-0586-189X ; 0000-0001-9948-9165 ; 0000-0002-7725-395X ; 0000-0002-2709-0216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10648926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10648926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiao, Li</creatorcontrib><creatorcontrib>Gao, Zhen</creatorcontrib><creatorcontrib>Boloursaz Mashhadi, Mahdi</creatorcontrib><creatorcontrib>Gunduz, Deniz</creatorcontrib><title>Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.</description><subject>Artificial intelligence</subject><subject>Artificial intelligence of things (AIoT)</subject><subject>Atmospheric modeling</subject><subject>Computational modeling</subject><subject>digital over-the-air computation</subject><subject>distributed optimization</subject><subject>Edge computing</subject><subject>federated edge learning</subject><subject>Federated learning</subject><subject>Modulation</subject><subject>Quantization (signal)</subject><subject>unsourced massive access</subject><subject>Wireless networks</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgs8gMuntiOnWUV2gIq6gLYIUVOPC5GbVLZbiX-nr4WrGbm6p5ZHELugY0AWPn4-j6uRjnLxYgLDlLlF2QAUmrKGNOXZMAU51QrKK7JTYw_jIEQOh-QrzcTo99h9uSXPplVtthhoOkb6diHrOrXm20yyfdd5vrjvd52vj0mdOKcbz12KZuixWAS2mxil5jN0YTOd8tbcuXMKuLdeQ7J53TyUT3T-WL2Uo3ntAWhE5XcMdEUirWITkpoUXFAU-6XgpWugQaU5koKKxoNYLkBm3NnG8mlUxr5kMDpbxv6GAO6ehP82oTfGlh90FMf9NQHPfVZz555ODEeEf_1C6HLvOB_hitiGw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Qiao, Li</creator><creator>Gao, Zhen</creator><creator>Boloursaz Mashhadi, Mahdi</creator><creator>Gunduz, Deniz</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0586-189X</orcidid><orcidid>https://orcid.org/0000-0001-9948-9165</orcidid><orcidid>https://orcid.org/0000-0002-7725-395X</orcidid><orcidid>https://orcid.org/0000-0002-2709-0216</orcidid></search><sort><creationdate>202411</creationdate><title>Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning</title><author>Qiao, Li ; Gao, Zhen ; Boloursaz Mashhadi, Mahdi ; Gunduz, Deniz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-53f04b670ceef551ce731ea91ce609fb1b1783754d4b811d3a1d23fdb535f78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial intelligence of things (AIoT)</topic><topic>Atmospheric modeling</topic><topic>Computational modeling</topic><topic>digital over-the-air computation</topic><topic>distributed optimization</topic><topic>Edge computing</topic><topic>federated edge learning</topic><topic>Federated learning</topic><topic>Modulation</topic><topic>Quantization (signal)</topic><topic>unsourced massive access</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Li</creatorcontrib><creatorcontrib>Gao, Zhen</creatorcontrib><creatorcontrib>Boloursaz Mashhadi, Mahdi</creatorcontrib><creatorcontrib>Gunduz, Deniz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Li</au><au>Gao, Zhen</au><au>Boloursaz Mashhadi, Mahdi</au><au>Gunduz, Deniz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2024-11</date><risdate>2024</risdate><volume>42</volume><issue>11</issue><spage>3078</spage><epage>3094</epage><pages>3078-3094</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.</abstract><pub>IEEE</pub><doi>10.1109/JSAC.2024.3431572</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0586-189X</orcidid><orcidid>https://orcid.org/0000-0001-9948-9165</orcidid><orcidid>https://orcid.org/0000-0002-7725-395X</orcidid><orcidid>https://orcid.org/0000-0002-2709-0216</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2024-11, Vol.42 (11), p.3078-3094
issn 0733-8716
1558-0008
language eng
recordid cdi_ieee_primary_10648926
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Artificial intelligence of things (AIoT)
Atmospheric modeling
Computational modeling
digital over-the-air computation
distributed optimization
Edge computing
federated edge learning
Federated learning
Modulation
Quantization (signal)
unsourced massive access
Wireless networks
title Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20Digital%20Over-the-Air%20Computation%20for%20Communication-Efficient%20Federated%20Edge%20Learning&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Qiao,%20Li&rft.date=2024-11&rft.volume=42&rft.issue=11&rft.spage=3078&rft.epage=3094&rft.pages=3078-3094&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2024.3431572&rft_dat=%3Ccrossref_RIE%3E10_1109_JSAC_2024_3431572%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10648926&rfr_iscdi=true