Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning
Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signa...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2024-11, Vol.42 (11), p.3078-3094 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3094 |
---|---|
container_issue | 11 |
container_start_page | 3078 |
container_title | IEEE journal on selected areas in communications |
container_volume | 42 |
creator | Qiao, Li Gao, Zhen Boloursaz Mashhadi, Mahdi Gunduz, Deniz |
description | Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources. |
doi_str_mv | 10.1109/JSAC.2024.3431572 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10648926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10648926</ieee_id><sourcerecordid>10_1109_JSAC_2024_3431572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-53f04b670ceef551ce731ea91ce609fb1b1783754d4b811d3a1d23fdb535f78e3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgs8gMuntiOnWUV2gIq6gLYIUVOPC5GbVLZbiX-nr4WrGbm6p5ZHELugY0AWPn4-j6uRjnLxYgLDlLlF2QAUmrKGNOXZMAU51QrKK7JTYw_jIEQOh-QrzcTo99h9uSXPplVtthhoOkb6diHrOrXm20yyfdd5vrjvd52vj0mdOKcbz12KZuixWAS2mxil5jN0YTOd8tbcuXMKuLdeQ7J53TyUT3T-WL2Uo3ntAWhE5XcMdEUirWITkpoUXFAU-6XgpWugQaU5koKKxoNYLkBm3NnG8mlUxr5kMDpbxv6GAO6ehP82oTfGlh90FMf9NQHPfVZz555ODEeEf_1C6HLvOB_hitiGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Qiao, Li ; Gao, Zhen ; Boloursaz Mashhadi, Mahdi ; Gunduz, Deniz</creator><creatorcontrib>Qiao, Li ; Gao, Zhen ; Boloursaz Mashhadi, Mahdi ; Gunduz, Deniz</creatorcontrib><description>Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2024.3431572</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial intelligence of things (AIoT) ; Atmospheric modeling ; Computational modeling ; digital over-the-air computation ; distributed optimization ; Edge computing ; federated edge learning ; Federated learning ; Modulation ; Quantization (signal) ; unsourced massive access ; Wireless networks</subject><ispartof>IEEE journal on selected areas in communications, 2024-11, Vol.42 (11), p.3078-3094</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-53f04b670ceef551ce731ea91ce609fb1b1783754d4b811d3a1d23fdb535f78e3</cites><orcidid>0000-0003-0586-189X ; 0000-0001-9948-9165 ; 0000-0002-7725-395X ; 0000-0002-2709-0216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10648926$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10648926$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiao, Li</creatorcontrib><creatorcontrib>Gao, Zhen</creatorcontrib><creatorcontrib>Boloursaz Mashhadi, Mahdi</creatorcontrib><creatorcontrib>Gunduz, Deniz</creatorcontrib><title>Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.</description><subject>Artificial intelligence</subject><subject>Artificial intelligence of things (AIoT)</subject><subject>Atmospheric modeling</subject><subject>Computational modeling</subject><subject>digital over-the-air computation</subject><subject>distributed optimization</subject><subject>Edge computing</subject><subject>federated edge learning</subject><subject>Federated learning</subject><subject>Modulation</subject><subject>Quantization (signal)</subject><subject>unsourced massive access</subject><subject>Wireless networks</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgs8gMuntiOnWUV2gIq6gLYIUVOPC5GbVLZbiX-nr4WrGbm6p5ZHELugY0AWPn4-j6uRjnLxYgLDlLlF2QAUmrKGNOXZMAU51QrKK7JTYw_jIEQOh-QrzcTo99h9uSXPplVtthhoOkb6diHrOrXm20yyfdd5vrjvd52vj0mdOKcbz12KZuixWAS2mxil5jN0YTOd8tbcuXMKuLdeQ7J53TyUT3T-WL2Uo3ntAWhE5XcMdEUirWITkpoUXFAU-6XgpWugQaU5koKKxoNYLkBm3NnG8mlUxr5kMDpbxv6GAO6ehP82oTfGlh90FMf9NQHPfVZz555ODEeEf_1C6HLvOB_hitiGw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Qiao, Li</creator><creator>Gao, Zhen</creator><creator>Boloursaz Mashhadi, Mahdi</creator><creator>Gunduz, Deniz</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0586-189X</orcidid><orcidid>https://orcid.org/0000-0001-9948-9165</orcidid><orcidid>https://orcid.org/0000-0002-7725-395X</orcidid><orcidid>https://orcid.org/0000-0002-2709-0216</orcidid></search><sort><creationdate>202411</creationdate><title>Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning</title><author>Qiao, Li ; Gao, Zhen ; Boloursaz Mashhadi, Mahdi ; Gunduz, Deniz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-53f04b670ceef551ce731ea91ce609fb1b1783754d4b811d3a1d23fdb535f78e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial intelligence of things (AIoT)</topic><topic>Atmospheric modeling</topic><topic>Computational modeling</topic><topic>digital over-the-air computation</topic><topic>distributed optimization</topic><topic>Edge computing</topic><topic>federated edge learning</topic><topic>Federated learning</topic><topic>Modulation</topic><topic>Quantization (signal)</topic><topic>unsourced massive access</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Li</creatorcontrib><creatorcontrib>Gao, Zhen</creatorcontrib><creatorcontrib>Boloursaz Mashhadi, Mahdi</creatorcontrib><creatorcontrib>Gunduz, Deniz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Li</au><au>Gao, Zhen</au><au>Boloursaz Mashhadi, Mahdi</au><au>Gunduz, Deniz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2024-11</date><risdate>2024</risdate><volume>42</volume><issue>11</issue><spage>3078</spage><epage>3094</epage><pages>3078-3094</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Over-the-air computation (AirComp) is a promising technology converging communication and computation over wireless networks, which can be particularly effective in model training, inference, and more emerging edge intelligence applications. AirComp relies on uncoded transmission of individual signals, which are added naturally over the multiple access channel thanks to the superposition property of the wireless medium. Despite significantly improved communication efficiency, how to accommodate AirComp in the existing and future digital communication networks, that are based on discrete modulation schemes, remains a challenge. This paper proposes a massive digital AirComp (MD-AirComp) scheme, that leverages an unsourced massive access protocol, to enhance compatibility with both current and next-generation wireless networks. MD-AirComp utilizes vector quantization to reduce the uplink communication overhead, and employs shared quantization and modulation codebooks. At the receiver, we propose a near-optimal approximate message passing-based algorithm to compute the model aggregation results from the superposed sequences, which relies on estimating the number of devices transmitting each code sequence, rather than trying to decode the messages of individual transmitters. We apply MD-AirComp to federated edge learning (FEEL), and show that it significantly accelerates FEEL convergence compared to state-of-the-art while using the same amount of communication resources.</abstract><pub>IEEE</pub><doi>10.1109/JSAC.2024.3431572</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0586-189X</orcidid><orcidid>https://orcid.org/0000-0001-9948-9165</orcidid><orcidid>https://orcid.org/0000-0002-7725-395X</orcidid><orcidid>https://orcid.org/0000-0002-2709-0216</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2024-11, Vol.42 (11), p.3078-3094 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_ieee_primary_10648926 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Artificial intelligence of things (AIoT) Atmospheric modeling Computational modeling digital over-the-air computation distributed optimization Edge computing federated edge learning Federated learning Modulation Quantization (signal) unsourced massive access Wireless networks |
title | Massive Digital Over-the-Air Computation for Communication-Efficient Federated Edge Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20Digital%20Over-the-Air%20Computation%20for%20Communication-Efficient%20Federated%20Edge%20Learning&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Qiao,%20Li&rft.date=2024-11&rft.volume=42&rft.issue=11&rft.spage=3078&rft.epage=3094&rft.pages=3078-3094&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2024.3431572&rft_dat=%3Ccrossref_RIE%3E10_1109_JSAC_2024_3431572%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10648926&rfr_iscdi=true |