Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach

This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first cle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors letters 2024-10, Vol.8 (10), p.1-4
Hauptverfasser: Yousuf, Asim, Hafiz, Rehan, Riaz, Saqib, Farooq, Muhammad, Riaz, Kashif, Rahman, Muhammad Mahboob Ur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 10
container_start_page 1
container_title IEEE sensors letters
container_volume 8
creator Yousuf, Asim
Hafiz, Rehan
Riaz, Saqib
Farooq, Muhammad
Riaz, Kashif
Rahman, Muhammad Mahboob Ur
description This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.
doi_str_mv 10.1109/LSENS.2024.3450176
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10648729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10648729</ieee_id><sourcerecordid>3102975036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-8dc108d1b5da1571ca6c1906c2fec1d5951e512eef0195e96a9e6811faffcfb83</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhiMEElXpCyAGS8wpPk4cJ2whvRAplKEwW659DClpUpx06NuTkg6dzq-j_yJ9nncPdApAk6diPV-tp4yycBqEnIKIrrwRCwX3IRTs-kLfepO23VJKIWaCBnTk_eS1RVc2jrwdG62cKVVF-p9yuiubmsyww0EtXLMjBSpD8pw0lsyz5TNJydKpXalqktZfh0o5siixMv6LatEQNvOz1Yqk-71rlP6-826sqlqcnO_Y-1zMP7JXv3hf5lla-BqE6PzYaKCxgQ03CrgArSINCY00s6jB8IQDcmCIlkLCMYlUglEMYJW12m7iYOw9Dr397O8B205um4Or-0kZAGWJ4DSIehcbXNo1bevQyr0rd8odJVB54ir_ucoTV3nm2ocehlCJiBeBKIwFS4I_YBVyZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102975036</pqid></control><display><type>article</type><title>Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Yousuf, Asim ; Hafiz, Rehan ; Riaz, Saqib ; Farooq, Muhammad ; Riaz, Kashif ; Rahman, Muhammad Mahboob Ur</creator><creatorcontrib>Yousuf, Asim ; Hafiz, Rehan ; Riaz, Saqib ; Farooq, Muhammad ; Riaz, Kashif ; Rahman, Muhammad Mahboob Ur</creatorcontrib><description>This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.</description><identifier>ISSN: 2475-1472</identifier><identifier>EISSN: 2475-1472</identifier><identifier>DOI: 10.1109/LSENS.2024.3450176</identifier><identifier>CODEN: ISLECD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arrhythmia ; Artificial neural networks ; cardiovascular diseases (CVDs) ; convolutional neural network (CNN) ; Datasets ; electrocardiogram (ECG) ; Electrocardiography ; Feature extraction ; Gramian angular difference field (GADF) ; Gramian angular summation field (GASF) ; Gray scale ; Heart attacks ; Lead ; Myocardial infarction ; myocardial infarction (MI) ; Myocardium ; Noise ; Noise measurement ; Real time ; Sensor applications ; Wearable technology ; Wrist</subject><ispartof>IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-8dc108d1b5da1571ca6c1906c2fec1d5951e512eef0195e96a9e6811faffcfb83</cites><orcidid>0000-0002-5062-3068 ; 0000-0002-6768-0886 ; 0000-0001-5000-0402 ; 0000-0001-6141-079X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10648729$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10648729$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yousuf, Asim</creatorcontrib><creatorcontrib>Hafiz, Rehan</creatorcontrib><creatorcontrib>Riaz, Saqib</creatorcontrib><creatorcontrib>Farooq, Muhammad</creatorcontrib><creatorcontrib>Riaz, Kashif</creatorcontrib><creatorcontrib>Rahman, Muhammad Mahboob Ur</creatorcontrib><title>Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach</title><title>IEEE sensors letters</title><addtitle>LSENS</addtitle><description>This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Artificial neural networks</subject><subject>cardiovascular diseases (CVDs)</subject><subject>convolutional neural network (CNN)</subject><subject>Datasets</subject><subject>electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Gramian angular difference field (GADF)</subject><subject>Gramian angular summation field (GASF)</subject><subject>Gray scale</subject><subject>Heart attacks</subject><subject>Lead</subject><subject>Myocardial infarction</subject><subject>myocardial infarction (MI)</subject><subject>Myocardium</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Real time</subject><subject>Sensor applications</subject><subject>Wearable technology</subject><subject>Wrist</subject><issn>2475-1472</issn><issn>2475-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtOwzAUhiMEElXpCyAGS8wpPk4cJ2whvRAplKEwW659DClpUpx06NuTkg6dzq-j_yJ9nncPdApAk6diPV-tp4yycBqEnIKIrrwRCwX3IRTs-kLfepO23VJKIWaCBnTk_eS1RVc2jrwdG62cKVVF-p9yuiubmsyww0EtXLMjBSpD8pw0lsyz5TNJydKpXalqktZfh0o5siixMv6LatEQNvOz1Yqk-71rlP6-826sqlqcnO_Y-1zMP7JXv3hf5lla-BqE6PzYaKCxgQ03CrgArSINCY00s6jB8IQDcmCIlkLCMYlUglEMYJW12m7iYOw9Dr397O8B205um4Or-0kZAGWJ4DSIehcbXNo1bevQyr0rd8odJVB54ir_ucoTV3nm2ocehlCJiBeBKIwFS4I_YBVyZw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Yousuf, Asim</creator><creator>Hafiz, Rehan</creator><creator>Riaz, Saqib</creator><creator>Farooq, Muhammad</creator><creator>Riaz, Kashif</creator><creator>Rahman, Muhammad Mahboob Ur</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5062-3068</orcidid><orcidid>https://orcid.org/0000-0002-6768-0886</orcidid><orcidid>https://orcid.org/0000-0001-5000-0402</orcidid><orcidid>https://orcid.org/0000-0001-6141-079X</orcidid></search><sort><creationdate>20241001</creationdate><title>Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach</title><author>Yousuf, Asim ; Hafiz, Rehan ; Riaz, Saqib ; Farooq, Muhammad ; Riaz, Kashif ; Rahman, Muhammad Mahboob Ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-8dc108d1b5da1571ca6c1906c2fec1d5951e512eef0195e96a9e6811faffcfb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Artificial neural networks</topic><topic>cardiovascular diseases (CVDs)</topic><topic>convolutional neural network (CNN)</topic><topic>Datasets</topic><topic>electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Gramian angular difference field (GADF)</topic><topic>Gramian angular summation field (GASF)</topic><topic>Gray scale</topic><topic>Heart attacks</topic><topic>Lead</topic><topic>Myocardial infarction</topic><topic>myocardial infarction (MI)</topic><topic>Myocardium</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Real time</topic><topic>Sensor applications</topic><topic>Wearable technology</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousuf, Asim</creatorcontrib><creatorcontrib>Hafiz, Rehan</creatorcontrib><creatorcontrib>Riaz, Saqib</creatorcontrib><creatorcontrib>Farooq, Muhammad</creatorcontrib><creatorcontrib>Riaz, Kashif</creatorcontrib><creatorcontrib>Rahman, Muhammad Mahboob Ur</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yousuf, Asim</au><au>Hafiz, Rehan</au><au>Riaz, Saqib</au><au>Farooq, Muhammad</au><au>Riaz, Kashif</au><au>Rahman, Muhammad Mahboob Ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach</atitle><jtitle>IEEE sensors letters</jtitle><stitle>LSENS</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>8</volume><issue>10</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2475-1472</issn><eissn>2475-1472</eissn><coden>ISLECD</coden><abstract>This letter presents a novel method for inferior myocardial infarction (MI) detection using lead II of electrocardiogram (ECG). We evaluate our proposed method on a public dataset, namely, Physikalisch Technische Bundesanstalt (PTB) ECG dataset from PhysioNet. Under our proposed method, we first clean the noisy ECG signals using db4 wavelet, followed by an R-peak detection algorithm to segment the ECG signals into beats. We then translate the ECG timeseries dataset to an equivalent dataset of grayscale images using Gramian angular summation field (GASF) and Gramian angular difference field (GADF) operations. Subsequently, the grayscale images are fed into a custom 2-D convolutional neural network (CNN), which efficiently differentiates between a healthy subject and a subject with MI. Our proposed approach achieves an average classification accuracy of 99.68%, 99.80%, 99.82%, and 99.84% under GASF dataset with noise and baseline wander, GADF dataset with noise and baseline wander, GASF dataset with noise and baseline wander removed, and GADF dataset with noise and baseline wander removed, respectively. Most importantly, this work opens the floor for innovation in wearable devices to measure lead II ECG (e.g., by a smart watch worn on right wrist, along with a smart patch on left leg), in order to do accurate, real-time, and early detection of inferior wall MI.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LSENS.2024.3450176</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5062-3068</orcidid><orcidid>https://orcid.org/0000-0002-6768-0886</orcidid><orcidid>https://orcid.org/0000-0001-5000-0402</orcidid><orcidid>https://orcid.org/0000-0001-6141-079X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1472
ispartof IEEE sensors letters, 2024-10, Vol.8 (10), p.1-4
issn 2475-1472
2475-1472
language eng
recordid cdi_ieee_primary_10648729
source IEEE Electronic Library (IEL)
subjects Algorithms
Arrhythmia
Artificial neural networks
cardiovascular diseases (CVDs)
convolutional neural network (CNN)
Datasets
electrocardiogram (ECG)
Electrocardiography
Feature extraction
Gramian angular difference field (GADF)
Gramian angular summation field (GASF)
Gray scale
Heart attacks
Lead
Myocardial infarction
myocardial infarction (MI)
Myocardium
Noise
Noise measurement
Real time
Sensor applications
Wearable technology
Wrist
title Inferior Myocardial Infarction Detection From Lead II of ECG: A Gramian Angular Field-Based 2D-CNN Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferior%20Myocardial%20Infarction%20Detection%20From%20Lead%20II%20of%20ECG:%20A%20Gramian%20Angular%20Field-Based%202D-CNN%20Approach&rft.jtitle=IEEE%20sensors%20letters&rft.au=Yousuf,%20Asim&rft.date=2024-10-01&rft.volume=8&rft.issue=10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2475-1472&rft.eissn=2475-1472&rft.coden=ISLECD&rft_id=info:doi/10.1109/LSENS.2024.3450176&rft_dat=%3Cproquest_RIE%3E3102975036%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102975036&rft_id=info:pmid/&rft_ieee_id=10648729&rfr_iscdi=true