Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings

Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, Vol.24 (20), p.32577-32595
Hauptverfasser: Chen, Xiao-Dan, Li, Ke, Wang, Shao-Fan, Liu, Hao-Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32595
container_issue 20
container_start_page 32577
container_title IEEE sensors journal
container_volume 24
creator Chen, Xiao-Dan
Li, Ke
Wang, Shao-Fan
Liu, Hao-Bo
description Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describe the entire degradation process. However, existing studies typically assume that model transition probabilities are known and constant, which is unrealistic in practical applications. To address this research gap, this study proposes the switching unscented Kalman filter-expectation maximization (SUKF-EM) algorithm. This algorithm first introduces a novel method for integrating health indicators (HIs). Subsequently, to resolve the issue of real-time estimation of model transition probabilities, an objective function for evaluating these probabilities is constructed based on the EM algorithm. Following this, an algorithmic framework for real-time identification using stochastic approximation is derived. Finally, the switching unscented Kalman filtering algorithm is integrated to achieve RUL prediction for bearings. The effectiveness of the proposed method has been validated using run-to-failure experimental data from the Intelligent System Maintenance Center at the University of Cincinnati, as well as bearing datasets from Xi'an Jiaotong University and the Changxing Sumyoung Technology (XJTU-SY).
doi_str_mv 10.1109/JSEN.2024.3445934
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10648586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10648586</ieee_id><sourcerecordid>3117135813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-8f969b1b8bf968884cbf7e57e2feb769744c20d0002e1e08d26ae8b4832c5bf93</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhCMEEqXwAEgcLHFOsWMndo5QUf4qQLQV3CI7WVOX1Cl2qqpvj9P2wGlntd_MShNFlwQPCMH5zfPk_nWQ4IQNKGNpTtlR1CNpKmLCmTjuNMUxo_zrNDrzfoExyXnKe9F2sjFtOTf2G82sL8G2UKEXWS-lRSNTt-A8-jTtPFx_bLOxaOqk9aY1jUXvrlFSmTps4JFuHPqApTR2F-ZBr2s0NhoCB5Upd5ZGozuQLhD-PDrRsvZwcZj9aDa6nw4f4_Hbw9PwdhyXhGdtLHSe5YoooYIQQrBSaQ4ph0SD4lnOGSsTXGGMEyCARZVkEoRigiZlGjy0H13vc1eu-V2Db4tFs3Y2vCwoIZzQVBAaKLKnStd470AXK2eW0m0Lgouu4aJruOgaLg4NB8_V3mMA4B-fMZGKjP4Boa55Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117135813</pqid></control><display><type>article</type><title>Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xiao-Dan ; Li, Ke ; Wang, Shao-Fan ; Liu, Hao-Bo</creator><creatorcontrib>Chen, Xiao-Dan ; Li, Ke ; Wang, Shao-Fan ; Liu, Hao-Bo</creatorcontrib><description>Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describe the entire degradation process. However, existing studies typically assume that model transition probabilities are known and constant, which is unrealistic in practical applications. To address this research gap, this study proposes the switching unscented Kalman filter-expectation maximization (SUKF-EM) algorithm. This algorithm first introduces a novel method for integrating health indicators (HIs). Subsequently, to resolve the issue of real-time estimation of model transition probabilities, an objective function for evaluating these probabilities is constructed based on the EM algorithm. Following this, an algorithmic framework for real-time identification using stochastic approximation is derived. Finally, the switching unscented Kalman filtering algorithm is integrated to achieve RUL prediction for bearings. The effectiveness of the proposed method has been validated using run-to-failure experimental data from the Intelligent System Maintenance Center at the University of Cincinnati, as well as bearing datasets from Xi'an Jiaotong University and the Changxing Sumyoung Technology (XJTU-SY).</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3445934</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Critical components ; Degradation ; Expectation maximization (EM) ; Fault detection ; Feature extraction ; health indicator (HI) ; Kalman filters ; Life prediction ; Maintenance ; model transition probabilities ; Prediction algorithms ; Predictive models ; Real time ; Sensors ; Switches ; switching multimodel prognostics ; switching unscented Kalman filtering ; Transition probabilities ; Useful life</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (20), p.32577-32595</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-8f969b1b8bf968884cbf7e57e2feb769744c20d0002e1e08d26ae8b4832c5bf93</cites><orcidid>0000-0002-3694-1772 ; 0000-0003-0085-3313 ; 0000-0001-9231-8961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10648586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10648586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xiao-Dan</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Wang, Shao-Fan</creatorcontrib><creatorcontrib>Liu, Hao-Bo</creatorcontrib><title>Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describe the entire degradation process. However, existing studies typically assume that model transition probabilities are known and constant, which is unrealistic in practical applications. To address this research gap, this study proposes the switching unscented Kalman filter-expectation maximization (SUKF-EM) algorithm. This algorithm first introduces a novel method for integrating health indicators (HIs). Subsequently, to resolve the issue of real-time estimation of model transition probabilities, an objective function for evaluating these probabilities is constructed based on the EM algorithm. Following this, an algorithmic framework for real-time identification using stochastic approximation is derived. Finally, the switching unscented Kalman filtering algorithm is integrated to achieve RUL prediction for bearings. The effectiveness of the proposed method has been validated using run-to-failure experimental data from the Intelligent System Maintenance Center at the University of Cincinnati, as well as bearing datasets from Xi'an Jiaotong University and the Changxing Sumyoung Technology (XJTU-SY).</description><subject>Algorithms</subject><subject>Critical components</subject><subject>Degradation</subject><subject>Expectation maximization (EM)</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>health indicator (HI)</subject><subject>Kalman filters</subject><subject>Life prediction</subject><subject>Maintenance</subject><subject>model transition probabilities</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Real time</subject><subject>Sensors</subject><subject>Switches</subject><subject>switching multimodel prognostics</subject><subject>switching unscented Kalman filtering</subject><subject>Transition probabilities</subject><subject>Useful life</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhCMEEqXwAEgcLHFOsWMndo5QUf4qQLQV3CI7WVOX1Cl2qqpvj9P2wGlntd_MShNFlwQPCMH5zfPk_nWQ4IQNKGNpTtlR1CNpKmLCmTjuNMUxo_zrNDrzfoExyXnKe9F2sjFtOTf2G82sL8G2UKEXWS-lRSNTt-A8-jTtPFx_bLOxaOqk9aY1jUXvrlFSmTps4JFuHPqApTR2F-ZBr2s0NhoCB5Upd5ZGozuQLhD-PDrRsvZwcZj9aDa6nw4f4_Hbw9PwdhyXhGdtLHSe5YoooYIQQrBSaQ4ph0SD4lnOGSsTXGGMEyCARZVkEoRigiZlGjy0H13vc1eu-V2Db4tFs3Y2vCwoIZzQVBAaKLKnStd470AXK2eW0m0Lgouu4aJruOgaLg4NB8_V3mMA4B-fMZGKjP4Boa55Zw</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Chen, Xiao-Dan</creator><creator>Li, Ke</creator><creator>Wang, Shao-Fan</creator><creator>Liu, Hao-Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3694-1772</orcidid><orcidid>https://orcid.org/0000-0003-0085-3313</orcidid><orcidid>https://orcid.org/0000-0001-9231-8961</orcidid></search><sort><creationdate>20241015</creationdate><title>Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings</title><author>Chen, Xiao-Dan ; Li, Ke ; Wang, Shao-Fan ; Liu, Hao-Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-8f969b1b8bf968884cbf7e57e2feb769744c20d0002e1e08d26ae8b4832c5bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Critical components</topic><topic>Degradation</topic><topic>Expectation maximization (EM)</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>health indicator (HI)</topic><topic>Kalman filters</topic><topic>Life prediction</topic><topic>Maintenance</topic><topic>model transition probabilities</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Real time</topic><topic>Sensors</topic><topic>Switches</topic><topic>switching multimodel prognostics</topic><topic>switching unscented Kalman filtering</topic><topic>Transition probabilities</topic><topic>Useful life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiao-Dan</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Wang, Shao-Fan</creatorcontrib><creatorcontrib>Liu, Hao-Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiao-Dan</au><au>Li, Ke</au><au>Wang, Shao-Fan</au><au>Liu, Hao-Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>32577</spage><epage>32595</epage><pages>32577-32595</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describe the entire degradation process. However, existing studies typically assume that model transition probabilities are known and constant, which is unrealistic in practical applications. To address this research gap, this study proposes the switching unscented Kalman filter-expectation maximization (SUKF-EM) algorithm. This algorithm first introduces a novel method for integrating health indicators (HIs). Subsequently, to resolve the issue of real-time estimation of model transition probabilities, an objective function for evaluating these probabilities is constructed based on the EM algorithm. Following this, an algorithmic framework for real-time identification using stochastic approximation is derived. Finally, the switching unscented Kalman filtering algorithm is integrated to achieve RUL prediction for bearings. The effectiveness of the proposed method has been validated using run-to-failure experimental data from the Intelligent System Maintenance Center at the University of Cincinnati, as well as bearing datasets from Xi'an Jiaotong University and the Changxing Sumyoung Technology (XJTU-SY).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3445934</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3694-1772</orcidid><orcidid>https://orcid.org/0000-0003-0085-3313</orcidid><orcidid>https://orcid.org/0000-0001-9231-8961</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (20), p.32577-32595
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10648586
source IEEE Electronic Library (IEL)
subjects Algorithms
Critical components
Degradation
Expectation maximization (EM)
Fault detection
Feature extraction
health indicator (HI)
Kalman filters
Life prediction
Maintenance
model transition probabilities
Prediction algorithms
Predictive models
Real time
Sensors
Switches
switching multimodel prognostics
switching unscented Kalman filtering
Transition probabilities
Useful life
title Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switching%20Unscented%20Kalman%20Filters%20With%20Unknown%20Transition%20Probabilities%20for%20Remaining%20Useful%20Life%20Prediction%20of%20Bearings&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chen,%20Xiao-Dan&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=32577&rft.epage=32595&rft.pages=32577-32595&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3445934&rft_dat=%3Cproquest_RIE%3E3117135813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117135813&rft_id=info:pmid/&rft_ieee_id=10648586&rfr_iscdi=true