Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings
Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describ...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-10, Vol.24 (20), p.32577-32595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32595 |
---|---|
container_issue | 20 |
container_start_page | 32577 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Chen, Xiao-Dan Li, Ke Wang, Shao-Fan Liu, Hao-Bo |
description | Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describe the entire degradation process. However, existing studies typically assume that model transition probabilities are known and constant, which is unrealistic in practical applications. To address this research gap, this study proposes the switching unscented Kalman filter-expectation maximization (SUKF-EM) algorithm. This algorithm first introduces a novel method for integrating health indicators (HIs). Subsequently, to resolve the issue of real-time estimation of model transition probabilities, an objective function for evaluating these probabilities is constructed based on the EM algorithm. Following this, an algorithmic framework for real-time identification using stochastic approximation is derived. Finally, the switching unscented Kalman filtering algorithm is integrated to achieve RUL prediction for bearings. The effectiveness of the proposed method has been validated using run-to-failure experimental data from the Intelligent System Maintenance Center at the University of Cincinnati, as well as bearing datasets from Xi'an Jiaotong University and the Changxing Sumyoung Technology (XJTU-SY). |
doi_str_mv | 10.1109/JSEN.2024.3445934 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10648586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10648586</ieee_id><sourcerecordid>3117135813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-8f969b1b8bf968884cbf7e57e2feb769744c20d0002e1e08d26ae8b4832c5bf93</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhCMEEqXwAEgcLHFOsWMndo5QUf4qQLQV3CI7WVOX1Cl2qqpvj9P2wGlntd_MShNFlwQPCMH5zfPk_nWQ4IQNKGNpTtlR1CNpKmLCmTjuNMUxo_zrNDrzfoExyXnKe9F2sjFtOTf2G82sL8G2UKEXWS-lRSNTt-A8-jTtPFx_bLOxaOqk9aY1jUXvrlFSmTps4JFuHPqApTR2F-ZBr2s0NhoCB5Upd5ZGozuQLhD-PDrRsvZwcZj9aDa6nw4f4_Hbw9PwdhyXhGdtLHSe5YoooYIQQrBSaQ4ph0SD4lnOGSsTXGGMEyCARZVkEoRigiZlGjy0H13vc1eu-V2Db4tFs3Y2vCwoIZzQVBAaKLKnStd470AXK2eW0m0Lgouu4aJruOgaLg4NB8_V3mMA4B-fMZGKjP4Boa55Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117135813</pqid></control><display><type>article</type><title>Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xiao-Dan ; Li, Ke ; Wang, Shao-Fan ; Liu, Hao-Bo</creator><creatorcontrib>Chen, Xiao-Dan ; Li, Ke ; Wang, Shao-Fan ; Liu, Hao-Bo</creatorcontrib><description>Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describe the entire degradation process. However, existing studies typically assume that model transition probabilities are known and constant, which is unrealistic in practical applications. To address this research gap, this study proposes the switching unscented Kalman filter-expectation maximization (SUKF-EM) algorithm. This algorithm first introduces a novel method for integrating health indicators (HIs). Subsequently, to resolve the issue of real-time estimation of model transition probabilities, an objective function for evaluating these probabilities is constructed based on the EM algorithm. Following this, an algorithmic framework for real-time identification using stochastic approximation is derived. Finally, the switching unscented Kalman filtering algorithm is integrated to achieve RUL prediction for bearings. The effectiveness of the proposed method has been validated using run-to-failure experimental data from the Intelligent System Maintenance Center at the University of Cincinnati, as well as bearing datasets from Xi'an Jiaotong University and the Changxing Sumyoung Technology (XJTU-SY).</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3445934</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Critical components ; Degradation ; Expectation maximization (EM) ; Fault detection ; Feature extraction ; health indicator (HI) ; Kalman filters ; Life prediction ; Maintenance ; model transition probabilities ; Prediction algorithms ; Predictive models ; Real time ; Sensors ; Switches ; switching multimodel prognostics ; switching unscented Kalman filtering ; Transition probabilities ; Useful life</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (20), p.32577-32595</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-8f969b1b8bf968884cbf7e57e2feb769744c20d0002e1e08d26ae8b4832c5bf93</cites><orcidid>0000-0002-3694-1772 ; 0000-0003-0085-3313 ; 0000-0001-9231-8961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10648586$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10648586$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xiao-Dan</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Wang, Shao-Fan</creatorcontrib><creatorcontrib>Liu, Hao-Bo</creatorcontrib><title>Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describe the entire degradation process. However, existing studies typically assume that model transition probabilities are known and constant, which is unrealistic in practical applications. To address this research gap, this study proposes the switching unscented Kalman filter-expectation maximization (SUKF-EM) algorithm. This algorithm first introduces a novel method for integrating health indicators (HIs). Subsequently, to resolve the issue of real-time estimation of model transition probabilities, an objective function for evaluating these probabilities is constructed based on the EM algorithm. Following this, an algorithmic framework for real-time identification using stochastic approximation is derived. Finally, the switching unscented Kalman filtering algorithm is integrated to achieve RUL prediction for bearings. The effectiveness of the proposed method has been validated using run-to-failure experimental data from the Intelligent System Maintenance Center at the University of Cincinnati, as well as bearing datasets from Xi'an Jiaotong University and the Changxing Sumyoung Technology (XJTU-SY).</description><subject>Algorithms</subject><subject>Critical components</subject><subject>Degradation</subject><subject>Expectation maximization (EM)</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>health indicator (HI)</subject><subject>Kalman filters</subject><subject>Life prediction</subject><subject>Maintenance</subject><subject>model transition probabilities</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Real time</subject><subject>Sensors</subject><subject>Switches</subject><subject>switching multimodel prognostics</subject><subject>switching unscented Kalman filtering</subject><subject>Transition probabilities</subject><subject>Useful life</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhCMEEqXwAEgcLHFOsWMndo5QUf4qQLQV3CI7WVOX1Cl2qqpvj9P2wGlntd_MShNFlwQPCMH5zfPk_nWQ4IQNKGNpTtlR1CNpKmLCmTjuNMUxo_zrNDrzfoExyXnKe9F2sjFtOTf2G82sL8G2UKEXWS-lRSNTt-A8-jTtPFx_bLOxaOqk9aY1jUXvrlFSmTps4JFuHPqApTR2F-ZBr2s0NhoCB5Upd5ZGozuQLhD-PDrRsvZwcZj9aDa6nw4f4_Hbw9PwdhyXhGdtLHSe5YoooYIQQrBSaQ4ph0SD4lnOGSsTXGGMEyCARZVkEoRigiZlGjy0H13vc1eu-V2Db4tFs3Y2vCwoIZzQVBAaKLKnStd470AXK2eW0m0Lgouu4aJruOgaLg4NB8_V3mMA4B-fMZGKjP4Boa55Zw</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Chen, Xiao-Dan</creator><creator>Li, Ke</creator><creator>Wang, Shao-Fan</creator><creator>Liu, Hao-Bo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3694-1772</orcidid><orcidid>https://orcid.org/0000-0003-0085-3313</orcidid><orcidid>https://orcid.org/0000-0001-9231-8961</orcidid></search><sort><creationdate>20241015</creationdate><title>Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings</title><author>Chen, Xiao-Dan ; Li, Ke ; Wang, Shao-Fan ; Liu, Hao-Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-8f969b1b8bf968884cbf7e57e2feb769744c20d0002e1e08d26ae8b4832c5bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Critical components</topic><topic>Degradation</topic><topic>Expectation maximization (EM)</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>health indicator (HI)</topic><topic>Kalman filters</topic><topic>Life prediction</topic><topic>Maintenance</topic><topic>model transition probabilities</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Real time</topic><topic>Sensors</topic><topic>Switches</topic><topic>switching multimodel prognostics</topic><topic>switching unscented Kalman filtering</topic><topic>Transition probabilities</topic><topic>Useful life</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiao-Dan</creatorcontrib><creatorcontrib>Li, Ke</creatorcontrib><creatorcontrib>Wang, Shao-Fan</creatorcontrib><creatorcontrib>Liu, Hao-Bo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiao-Dan</au><au>Li, Ke</au><au>Wang, Shao-Fan</au><au>Liu, Hao-Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>32577</spage><epage>32595</epage><pages>32577-32595</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Since bearings are critical components of a mechanical equipment, timely fault detection and accurate prediction of remaining useful life (RUL) are essential for ensuring sufficient time for maintenance and replacement. Switching multimodel prognostics have been extensively studied to better describe the entire degradation process. However, existing studies typically assume that model transition probabilities are known and constant, which is unrealistic in practical applications. To address this research gap, this study proposes the switching unscented Kalman filter-expectation maximization (SUKF-EM) algorithm. This algorithm first introduces a novel method for integrating health indicators (HIs). Subsequently, to resolve the issue of real-time estimation of model transition probabilities, an objective function for evaluating these probabilities is constructed based on the EM algorithm. Following this, an algorithmic framework for real-time identification using stochastic approximation is derived. Finally, the switching unscented Kalman filtering algorithm is integrated to achieve RUL prediction for bearings. The effectiveness of the proposed method has been validated using run-to-failure experimental data from the Intelligent System Maintenance Center at the University of Cincinnati, as well as bearing datasets from Xi'an Jiaotong University and the Changxing Sumyoung Technology (XJTU-SY).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3445934</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-3694-1772</orcidid><orcidid>https://orcid.org/0000-0003-0085-3313</orcidid><orcidid>https://orcid.org/0000-0001-9231-8961</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-10, Vol.24 (20), p.32577-32595 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10648586 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Critical components Degradation Expectation maximization (EM) Fault detection Feature extraction health indicator (HI) Kalman filters Life prediction Maintenance model transition probabilities Prediction algorithms Predictive models Real time Sensors Switches switching multimodel prognostics switching unscented Kalman filtering Transition probabilities Useful life |
title | Switching Unscented Kalman Filters With Unknown Transition Probabilities for Remaining Useful Life Prediction of Bearings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T10%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Switching%20Unscented%20Kalman%20Filters%20With%20Unknown%20Transition%20Probabilities%20for%20Remaining%20Useful%20Life%20Prediction%20of%20Bearings&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chen,%20Xiao-Dan&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=32577&rft.epage=32595&rft.pages=32577-32595&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3445934&rft_dat=%3Cproquest_RIE%3E3117135813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117135813&rft_id=info:pmid/&rft_ieee_id=10648586&rfr_iscdi=true |