Asteroid Approach Guidance Based on Predicted Rendezvous Probability
In order to determine the maneuver time and thrust magnitude autonomously, an asteroid approach guidance method based on predicted rendezvous probability is developed under the constraints of guidance precision and fuel consumption. Firstly, the concept of rendezvous probability is proposed to descr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2024-08, p.1-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | |
creator | Zhu, Shengying Sui, Zhihui Jing, Yujie Xiu, Yi Ge, Dantong |
description | In order to determine the maneuver time and thrust magnitude autonomously, an asteroid approach guidance method based on predicted rendezvous probability is developed under the constraints of guidance precision and fuel consumption. Firstly, the concept of rendezvous probability is proposed to describe the probability of reaching the target asteroid. According to the covariance matrix of the spacecraft state estimate, the position error ellipse of the spacecraft on the B-plane is calculated. Considering the existence of non-Gaussian noises in the system, a probability density function is established using the rank sampling method. The probability of the target point falling into the error ellipse, that is, the rendezvous probability between the spacecraft and the target asteroid, is then evaluated by integrating the probability density function. By further introducing the rendezvous probability into the design of the engine switching curve, a trajectory correction strategy using constant thrust is designed based on the relationship between the predicted target-missing quantity and sight rotation angular velocity. The simulation results show that the proposed guidance law is of higher guidance accuracy and less fuel consumption than the traditional predictive guidance and error ellipse guidance. |
doi_str_mv | 10.1109/TAES.2024.3449275 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10646479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10646479</ieee_id><sourcerecordid>10_1109_TAES_2024_3449275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639-f4f5b2746662bf0bee88c164fb1d20bd72f2cb94ea89edebdb9915b577a7c2d23</originalsourceid><addsrcrecordid>eNpNkM1KxDAcxIMoWFcfQPDQF2hN0nw0x7quq7CgaO8lH_9gZG2XpCusT2_L7sHTMMPMHH4I3RJcEoLVfdusPkqKKSsrxhSV_AxlhHNZKIGrc5RhTOpCUU4u0VVKX5NlNasy9NikEeIQXN7sdnHQ9jNf74PTvYX8QSdw-dDnbxFcsONk3qF38Psz7NMUDkabsA3j4RpdeL1NcHPSBWqfVu3yudi8rl-WzaawolKFZ54bKpkQghqPDUBdWyKYN8RRbJyknlqjGOhagQPjjFKEGy6llpY6Wi0QOd7aOKQUwXe7GL51PHQEdzOFbqbQzRS6E4Vpc3fcBAD41xdMMKmqP0ejWgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asteroid Approach Guidance Based on Predicted Rendezvous Probability</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Zhu, Shengying ; Sui, Zhihui ; Jing, Yujie ; Xiu, Yi ; Ge, Dantong</creator><creatorcontrib>Zhu, Shengying ; Sui, Zhihui ; Jing, Yujie ; Xiu, Yi ; Ge, Dantong</creatorcontrib><description>In order to determine the maneuver time and thrust magnitude autonomously, an asteroid approach guidance method based on predicted rendezvous probability is developed under the constraints of guidance precision and fuel consumption. Firstly, the concept of rendezvous probability is proposed to describe the probability of reaching the target asteroid. According to the covariance matrix of the spacecraft state estimate, the position error ellipse of the spacecraft on the B-plane is calculated. Considering the existence of non-Gaussian noises in the system, a probability density function is established using the rank sampling method. The probability of the target point falling into the error ellipse, that is, the rendezvous probability between the spacecraft and the target asteroid, is then evaluated by integrating the probability density function. By further introducing the rendezvous probability into the design of the engine switching curve, a trajectory correction strategy using constant thrust is designed based on the relationship between the predicted target-missing quantity and sight rotation angular velocity. The simulation results show that the proposed guidance law is of higher guidance accuracy and less fuel consumption than the traditional predictive guidance and error ellipse guidance.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2024.3449275</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Asteroid approach phase ; Constant thrust guidance ; Force ; Fuels ; Gold ; Predicted rendezvous probability ; Rank sampling ; Solar system ; Space vehicles ; Trajectory</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2024-08, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2290-9069 ; 0000-0003-3714-6655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10646479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10646479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Shengying</creatorcontrib><creatorcontrib>Sui, Zhihui</creatorcontrib><creatorcontrib>Jing, Yujie</creatorcontrib><creatorcontrib>Xiu, Yi</creatorcontrib><creatorcontrib>Ge, Dantong</creatorcontrib><title>Asteroid Approach Guidance Based on Predicted Rendezvous Probability</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In order to determine the maneuver time and thrust magnitude autonomously, an asteroid approach guidance method based on predicted rendezvous probability is developed under the constraints of guidance precision and fuel consumption. Firstly, the concept of rendezvous probability is proposed to describe the probability of reaching the target asteroid. According to the covariance matrix of the spacecraft state estimate, the position error ellipse of the spacecraft on the B-plane is calculated. Considering the existence of non-Gaussian noises in the system, a probability density function is established using the rank sampling method. The probability of the target point falling into the error ellipse, that is, the rendezvous probability between the spacecraft and the target asteroid, is then evaluated by integrating the probability density function. By further introducing the rendezvous probability into the design of the engine switching curve, a trajectory correction strategy using constant thrust is designed based on the relationship between the predicted target-missing quantity and sight rotation angular velocity. The simulation results show that the proposed guidance law is of higher guidance accuracy and less fuel consumption than the traditional predictive guidance and error ellipse guidance.</description><subject>Accuracy</subject><subject>Asteroid approach phase</subject><subject>Constant thrust guidance</subject><subject>Force</subject><subject>Fuels</subject><subject>Gold</subject><subject>Predicted rendezvous probability</subject><subject>Rank sampling</subject><subject>Solar system</subject><subject>Space vehicles</subject><subject>Trajectory</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KxDAcxIMoWFcfQPDQF2hN0nw0x7quq7CgaO8lH_9gZG2XpCusT2_L7sHTMMPMHH4I3RJcEoLVfdusPkqKKSsrxhSV_AxlhHNZKIGrc5RhTOpCUU4u0VVKX5NlNasy9NikEeIQXN7sdnHQ9jNf74PTvYX8QSdw-dDnbxFcsONk3qF38Psz7NMUDkabsA3j4RpdeL1NcHPSBWqfVu3yudi8rl-WzaawolKFZ54bKpkQghqPDUBdWyKYN8RRbJyknlqjGOhagQPjjFKEGy6llpY6Wi0QOd7aOKQUwXe7GL51PHQEdzOFbqbQzRS6E4Vpc3fcBAD41xdMMKmqP0ejWgE</recordid><startdate>20240823</startdate><enddate>20240823</enddate><creator>Zhu, Shengying</creator><creator>Sui, Zhihui</creator><creator>Jing, Yujie</creator><creator>Xiu, Yi</creator><creator>Ge, Dantong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2290-9069</orcidid><orcidid>https://orcid.org/0000-0003-3714-6655</orcidid></search><sort><creationdate>20240823</creationdate><title>Asteroid Approach Guidance Based on Predicted Rendezvous Probability</title><author>Zhu, Shengying ; Sui, Zhihui ; Jing, Yujie ; Xiu, Yi ; Ge, Dantong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639-f4f5b2746662bf0bee88c164fb1d20bd72f2cb94ea89edebdb9915b577a7c2d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Asteroid approach phase</topic><topic>Constant thrust guidance</topic><topic>Force</topic><topic>Fuels</topic><topic>Gold</topic><topic>Predicted rendezvous probability</topic><topic>Rank sampling</topic><topic>Solar system</topic><topic>Space vehicles</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Shengying</creatorcontrib><creatorcontrib>Sui, Zhihui</creatorcontrib><creatorcontrib>Jing, Yujie</creatorcontrib><creatorcontrib>Xiu, Yi</creatorcontrib><creatorcontrib>Ge, Dantong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Shengying</au><au>Sui, Zhihui</au><au>Jing, Yujie</au><au>Xiu, Yi</au><au>Ge, Dantong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asteroid Approach Guidance Based on Predicted Rendezvous Probability</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2024-08-23</date><risdate>2024</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In order to determine the maneuver time and thrust magnitude autonomously, an asteroid approach guidance method based on predicted rendezvous probability is developed under the constraints of guidance precision and fuel consumption. Firstly, the concept of rendezvous probability is proposed to describe the probability of reaching the target asteroid. According to the covariance matrix of the spacecraft state estimate, the position error ellipse of the spacecraft on the B-plane is calculated. Considering the existence of non-Gaussian noises in the system, a probability density function is established using the rank sampling method. The probability of the target point falling into the error ellipse, that is, the rendezvous probability between the spacecraft and the target asteroid, is then evaluated by integrating the probability density function. By further introducing the rendezvous probability into the design of the engine switching curve, a trajectory correction strategy using constant thrust is designed based on the relationship between the predicted target-missing quantity and sight rotation angular velocity. The simulation results show that the proposed guidance law is of higher guidance accuracy and less fuel consumption than the traditional predictive guidance and error ellipse guidance.</abstract><pub>IEEE</pub><doi>10.1109/TAES.2024.3449275</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2290-9069</orcidid><orcidid>https://orcid.org/0000-0003-3714-6655</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2024-08, p.1-11 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_10646479 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Accuracy Asteroid approach phase Constant thrust guidance Force Fuels Gold Predicted rendezvous probability Rank sampling Solar system Space vehicles Trajectory |
title | Asteroid Approach Guidance Based on Predicted Rendezvous Probability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asteroid%20Approach%20Guidance%20Based%20on%20Predicted%20Rendezvous%20Probability&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Zhu,%20Shengying&rft.date=2024-08-23&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2024.3449275&rft_dat=%3Ccrossref_RIE%3E10_1109_TAES_2024_3449275%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10646479&rfr_iscdi=true |