Automatic Compensation System for Small Absolute Optical Encoders

Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, Vol.24 (19), p.29778-29785
Hauptverfasser: Zhao, Changhai, Wan, Qiuhua, Liang, Lihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29785
container_issue 19
container_start_page 29778
container_title IEEE sensors journal
container_volume 24
creator Zhao, Changhai
Wan, Qiuhua
Liang, Lihui
description Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop a system that automatically measures the long-period error and subdivision error of a small optical encoder. The error data are fitted and stored in the program memory of the encoder in the form of an error data table. During the displacement calculation, the encoder collects the peak and valley values of fine-coded two-channel moiré fringe signals in real time, normalizes the moiré fringe signal data, and compensates for the subdivision error and long-period error by looking up data in the table. A 16-bit small encoder was tested using the developed system, and the mean square errors of the encoder before and after compensation were 43.3^{\prime \prime } and 11.7^{\prime \prime } , respectively. Therefore, the algorithm proposed herein can significantly improve the measurement accuracy of small optical encoders.
doi_str_mv 10.1109/JSEN.2024.3442916
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10645748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10645748</ieee_id><sourcerecordid>3112229314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-2d4d6bf03e2492e1e94e87fbea71d4508a01b29ce0d6bd9ba14ddfe0a94fd193</originalsourceid><addsrcrecordid>eNpNkDtrwzAUhUVpoWnaH1DoIOjsVFeSHxpNSF-EZkiGbkK2riDBtlzJHvrva5MMne4ZvnMufIQ8AlsBMPXyud98rTjjciWk5AqyK7KANC0SyGVxPWfBEiny71tyF-OJMVB5mi9IWY6Db81wrOnatz12ccq-o_vfOGBLnQ9035qmoWUVfTMOSHf9BJuGbrraWwzxntw400R8uNwlObxuDuv3ZLt7-1iX26SGPBsSbqXNKscEcqk4AiqJRe4qNDlYmbLCMKi4qpFNmFWVAWmtQ2aUdBaUWJLn82wf_M-IcdAnP4Zu-qgFAOdcCZATBWeqDj7GgE734dia8KuB6VmUnkXpWZS-iJo6T-fOERH_8ZlMJ3fiD9juZQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112229314</pqid></control><display><type>article</type><title>Automatic Compensation System for Small Absolute Optical Encoders</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Changhai ; Wan, Qiuhua ; Liang, Lihui</creator><creatorcontrib>Zhao, Changhai ; Wan, Qiuhua ; Liang, Lihui</creatorcontrib><description><![CDATA[Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop a system that automatically measures the long-period error and subdivision error of a small optical encoder. The error data are fitted and stored in the program memory of the encoder in the form of an error data table. During the displacement calculation, the encoder collects the peak and valley values of fine-coded two-channel moiré fringe signals in real time, normalizes the moiré fringe signal data, and compensates for the subdivision error and long-period error by looking up data in the table. A 16-bit small encoder was tested using the developed system, and the mean square errors of the encoder before and after compensation were <inline-formula> <tex-math notation="LaTeX">43.3^{\prime \prime } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.7^{\prime \prime } </tex-math></inline-formula>, respectively. Therefore, the algorithm proposed herein can significantly improve the measurement accuracy of small optical encoders.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3442916</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptive optics ; Algorithms ; Codes ; Compensation ; Error analysis ; Error compensation ; long-period error ; Measurement uncertainty ; Moire fringes ; optical encoder ; Optical encoders ; Optical memory (data storage) ; Optical sensors ; Optical variables measurement ; small ; Stepping motors ; subdivision error</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (19), p.29778-29785</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-2d4d6bf03e2492e1e94e87fbea71d4508a01b29ce0d6bd9ba14ddfe0a94fd193</cites><orcidid>0000-0003-4149-138X ; 0000-0001-7861-8474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10645748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10645748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Changhai</creatorcontrib><creatorcontrib>Wan, Qiuhua</creatorcontrib><creatorcontrib>Liang, Lihui</creatorcontrib><title>Automatic Compensation System for Small Absolute Optical Encoders</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop a system that automatically measures the long-period error and subdivision error of a small optical encoder. The error data are fitted and stored in the program memory of the encoder in the form of an error data table. During the displacement calculation, the encoder collects the peak and valley values of fine-coded two-channel moiré fringe signals in real time, normalizes the moiré fringe signal data, and compensates for the subdivision error and long-period error by looking up data in the table. A 16-bit small encoder was tested using the developed system, and the mean square errors of the encoder before and after compensation were <inline-formula> <tex-math notation="LaTeX">43.3^{\prime \prime } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.7^{\prime \prime } </tex-math></inline-formula>, respectively. Therefore, the algorithm proposed herein can significantly improve the measurement accuracy of small optical encoders.]]></description><subject>Accuracy</subject><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Codes</subject><subject>Compensation</subject><subject>Error analysis</subject><subject>Error compensation</subject><subject>long-period error</subject><subject>Measurement uncertainty</subject><subject>Moire fringes</subject><subject>optical encoder</subject><subject>Optical encoders</subject><subject>Optical memory (data storage)</subject><subject>Optical sensors</subject><subject>Optical variables measurement</subject><subject>small</subject><subject>Stepping motors</subject><subject>subdivision error</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtrwzAUhUVpoWnaH1DoIOjsVFeSHxpNSF-EZkiGbkK2riDBtlzJHvrva5MMne4ZvnMufIQ8AlsBMPXyud98rTjjciWk5AqyK7KANC0SyGVxPWfBEiny71tyF-OJMVB5mi9IWY6Db81wrOnatz12ccq-o_vfOGBLnQ9035qmoWUVfTMOSHf9BJuGbrraWwzxntw400R8uNwlObxuDuv3ZLt7-1iX26SGPBsSbqXNKscEcqk4AiqJRe4qNDlYmbLCMKi4qpFNmFWVAWmtQ2aUdBaUWJLn82wf_M-IcdAnP4Zu-qgFAOdcCZATBWeqDj7GgE734dia8KuB6VmUnkXpWZS-iJo6T-fOERH_8ZlMJ3fiD9juZQE</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhao, Changhai</creator><creator>Wan, Qiuhua</creator><creator>Liang, Lihui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4149-138X</orcidid><orcidid>https://orcid.org/0000-0001-7861-8474</orcidid></search><sort><creationdate>20241001</creationdate><title>Automatic Compensation System for Small Absolute Optical Encoders</title><author>Zhao, Changhai ; Wan, Qiuhua ; Liang, Lihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-2d4d6bf03e2492e1e94e87fbea71d4508a01b29ce0d6bd9ba14ddfe0a94fd193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Codes</topic><topic>Compensation</topic><topic>Error analysis</topic><topic>Error compensation</topic><topic>long-period error</topic><topic>Measurement uncertainty</topic><topic>Moire fringes</topic><topic>optical encoder</topic><topic>Optical encoders</topic><topic>Optical memory (data storage)</topic><topic>Optical sensors</topic><topic>Optical variables measurement</topic><topic>small</topic><topic>Stepping motors</topic><topic>subdivision error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Changhai</creatorcontrib><creatorcontrib>Wan, Qiuhua</creatorcontrib><creatorcontrib>Liang, Lihui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Changhai</au><au>Wan, Qiuhua</au><au>Liang, Lihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Compensation System for Small Absolute Optical Encoders</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>24</volume><issue>19</issue><spage>29778</spage><epage>29785</epage><pages>29778-29785</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop a system that automatically measures the long-period error and subdivision error of a small optical encoder. The error data are fitted and stored in the program memory of the encoder in the form of an error data table. During the displacement calculation, the encoder collects the peak and valley values of fine-coded two-channel moiré fringe signals in real time, normalizes the moiré fringe signal data, and compensates for the subdivision error and long-period error by looking up data in the table. A 16-bit small encoder was tested using the developed system, and the mean square errors of the encoder before and after compensation were <inline-formula> <tex-math notation="LaTeX">43.3^{\prime \prime } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.7^{\prime \prime } </tex-math></inline-formula>, respectively. Therefore, the algorithm proposed herein can significantly improve the measurement accuracy of small optical encoders.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3442916</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4149-138X</orcidid><orcidid>https://orcid.org/0000-0001-7861-8474</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (19), p.29778-29785
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10645748
source IEEE Electronic Library (IEL)
subjects Accuracy
Adaptive optics
Algorithms
Codes
Compensation
Error analysis
Error compensation
long-period error
Measurement uncertainty
Moire fringes
optical encoder
Optical encoders
Optical memory (data storage)
Optical sensors
Optical variables measurement
small
Stepping motors
subdivision error
title Automatic Compensation System for Small Absolute Optical Encoders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Compensation%20System%20for%20Small%20Absolute%20Optical%20Encoders&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhao,%20Changhai&rft.date=2024-10-01&rft.volume=24&rft.issue=19&rft.spage=29778&rft.epage=29785&rft.pages=29778-29785&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3442916&rft_dat=%3Cproquest_RIE%3E3112229314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112229314&rft_id=info:pmid/&rft_ieee_id=10645748&rfr_iscdi=true