Automatic Compensation System for Small Absolute Optical Encoders
Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-10, Vol.24 (19), p.29778-29785 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29785 |
---|---|
container_issue | 19 |
container_start_page | 29778 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Zhao, Changhai Wan, Qiuhua Liang, Lihui |
description | Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop a system that automatically measures the long-period error and subdivision error of a small optical encoder. The error data are fitted and stored in the program memory of the encoder in the form of an error data table. During the displacement calculation, the encoder collects the peak and valley values of fine-coded two-channel moiré fringe signals in real time, normalizes the moiré fringe signal data, and compensates for the subdivision error and long-period error by looking up data in the table. A 16-bit small encoder was tested using the developed system, and the mean square errors of the encoder before and after compensation were 43.3^{\prime \prime } and 11.7^{\prime \prime } , respectively. Therefore, the algorithm proposed herein can significantly improve the measurement accuracy of small optical encoders. |
doi_str_mv | 10.1109/JSEN.2024.3442916 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10645748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10645748</ieee_id><sourcerecordid>3112229314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-2d4d6bf03e2492e1e94e87fbea71d4508a01b29ce0d6bd9ba14ddfe0a94fd193</originalsourceid><addsrcrecordid>eNpNkDtrwzAUhUVpoWnaH1DoIOjsVFeSHxpNSF-EZkiGbkK2riDBtlzJHvrva5MMne4ZvnMufIQ8AlsBMPXyud98rTjjciWk5AqyK7KANC0SyGVxPWfBEiny71tyF-OJMVB5mi9IWY6Db81wrOnatz12ccq-o_vfOGBLnQ9035qmoWUVfTMOSHf9BJuGbrraWwzxntw400R8uNwlObxuDuv3ZLt7-1iX26SGPBsSbqXNKscEcqk4AiqJRe4qNDlYmbLCMKi4qpFNmFWVAWmtQ2aUdBaUWJLn82wf_M-IcdAnP4Zu-qgFAOdcCZATBWeqDj7GgE734dia8KuB6VmUnkXpWZS-iJo6T-fOERH_8ZlMJ3fiD9juZQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112229314</pqid></control><display><type>article</type><title>Automatic Compensation System for Small Absolute Optical Encoders</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Changhai ; Wan, Qiuhua ; Liang, Lihui</creator><creatorcontrib>Zhao, Changhai ; Wan, Qiuhua ; Liang, Lihui</creatorcontrib><description><![CDATA[Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop a system that automatically measures the long-period error and subdivision error of a small optical encoder. The error data are fitted and stored in the program memory of the encoder in the form of an error data table. During the displacement calculation, the encoder collects the peak and valley values of fine-coded two-channel moiré fringe signals in real time, normalizes the moiré fringe signal data, and compensates for the subdivision error and long-period error by looking up data in the table. A 16-bit small encoder was tested using the developed system, and the mean square errors of the encoder before and after compensation were <inline-formula> <tex-math notation="LaTeX">43.3^{\prime \prime } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.7^{\prime \prime } </tex-math></inline-formula>, respectively. Therefore, the algorithm proposed herein can significantly improve the measurement accuracy of small optical encoders.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3442916</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptive optics ; Algorithms ; Codes ; Compensation ; Error analysis ; Error compensation ; long-period error ; Measurement uncertainty ; Moire fringes ; optical encoder ; Optical encoders ; Optical memory (data storage) ; Optical sensors ; Optical variables measurement ; small ; Stepping motors ; subdivision error</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (19), p.29778-29785</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-2d4d6bf03e2492e1e94e87fbea71d4508a01b29ce0d6bd9ba14ddfe0a94fd193</cites><orcidid>0000-0003-4149-138X ; 0000-0001-7861-8474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10645748$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10645748$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Changhai</creatorcontrib><creatorcontrib>Wan, Qiuhua</creatorcontrib><creatorcontrib>Liang, Lihui</creatorcontrib><title>Automatic Compensation System for Small Absolute Optical Encoders</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop a system that automatically measures the long-period error and subdivision error of a small optical encoder. The error data are fitted and stored in the program memory of the encoder in the form of an error data table. During the displacement calculation, the encoder collects the peak and valley values of fine-coded two-channel moiré fringe signals in real time, normalizes the moiré fringe signal data, and compensates for the subdivision error and long-period error by looking up data in the table. A 16-bit small encoder was tested using the developed system, and the mean square errors of the encoder before and after compensation were <inline-formula> <tex-math notation="LaTeX">43.3^{\prime \prime } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.7^{\prime \prime } </tex-math></inline-formula>, respectively. Therefore, the algorithm proposed herein can significantly improve the measurement accuracy of small optical encoders.]]></description><subject>Accuracy</subject><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Codes</subject><subject>Compensation</subject><subject>Error analysis</subject><subject>Error compensation</subject><subject>long-period error</subject><subject>Measurement uncertainty</subject><subject>Moire fringes</subject><subject>optical encoder</subject><subject>Optical encoders</subject><subject>Optical memory (data storage)</subject><subject>Optical sensors</subject><subject>Optical variables measurement</subject><subject>small</subject><subject>Stepping motors</subject><subject>subdivision error</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtrwzAUhUVpoWnaH1DoIOjsVFeSHxpNSF-EZkiGbkK2riDBtlzJHvrva5MMne4ZvnMufIQ8AlsBMPXyud98rTjjciWk5AqyK7KANC0SyGVxPWfBEiny71tyF-OJMVB5mi9IWY6Db81wrOnatz12ccq-o_vfOGBLnQ9035qmoWUVfTMOSHf9BJuGbrraWwzxntw400R8uNwlObxuDuv3ZLt7-1iX26SGPBsSbqXNKscEcqk4AiqJRe4qNDlYmbLCMKi4qpFNmFWVAWmtQ2aUdBaUWJLn82wf_M-IcdAnP4Zu-qgFAOdcCZATBWeqDj7GgE734dia8KuB6VmUnkXpWZS-iJo6T-fOERH_8ZlMJ3fiD9juZQE</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhao, Changhai</creator><creator>Wan, Qiuhua</creator><creator>Liang, Lihui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4149-138X</orcidid><orcidid>https://orcid.org/0000-0001-7861-8474</orcidid></search><sort><creationdate>20241001</creationdate><title>Automatic Compensation System for Small Absolute Optical Encoders</title><author>Zhao, Changhai ; Wan, Qiuhua ; Liang, Lihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-2d4d6bf03e2492e1e94e87fbea71d4508a01b29ce0d6bd9ba14ddfe0a94fd193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Codes</topic><topic>Compensation</topic><topic>Error analysis</topic><topic>Error compensation</topic><topic>long-period error</topic><topic>Measurement uncertainty</topic><topic>Moire fringes</topic><topic>optical encoder</topic><topic>Optical encoders</topic><topic>Optical memory (data storage)</topic><topic>Optical sensors</topic><topic>Optical variables measurement</topic><topic>small</topic><topic>Stepping motors</topic><topic>subdivision error</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Changhai</creatorcontrib><creatorcontrib>Wan, Qiuhua</creatorcontrib><creatorcontrib>Liang, Lihui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Changhai</au><au>Wan, Qiuhua</au><au>Liang, Lihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Compensation System for Small Absolute Optical Encoders</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>24</volume><issue>19</issue><spage>29778</spage><epage>29785</epage><pages>29778-29785</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[Subdivision errors and long-period errors are the main components of small absolute optical encoder error. When the external environment changes or the encoder operates for a long time, the subdivision error will increase. In this study, a stepper motor and high-precision encoder are used to develop a system that automatically measures the long-period error and subdivision error of a small optical encoder. The error data are fitted and stored in the program memory of the encoder in the form of an error data table. During the displacement calculation, the encoder collects the peak and valley values of fine-coded two-channel moiré fringe signals in real time, normalizes the moiré fringe signal data, and compensates for the subdivision error and long-period error by looking up data in the table. A 16-bit small encoder was tested using the developed system, and the mean square errors of the encoder before and after compensation were <inline-formula> <tex-math notation="LaTeX">43.3^{\prime \prime } </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">11.7^{\prime \prime } </tex-math></inline-formula>, respectively. Therefore, the algorithm proposed herein can significantly improve the measurement accuracy of small optical encoders.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3442916</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4149-138X</orcidid><orcidid>https://orcid.org/0000-0001-7861-8474</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-10, Vol.24 (19), p.29778-29785 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10645748 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Adaptive optics Algorithms Codes Compensation Error analysis Error compensation long-period error Measurement uncertainty Moire fringes optical encoder Optical encoders Optical memory (data storage) Optical sensors Optical variables measurement small Stepping motors subdivision error |
title | Automatic Compensation System for Small Absolute Optical Encoders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Compensation%20System%20for%20Small%20Absolute%20Optical%20Encoders&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhao,%20Changhai&rft.date=2024-10-01&rft.volume=24&rft.issue=19&rft.spage=29778&rft.epage=29785&rft.pages=29778-29785&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3442916&rft_dat=%3Cproquest_RIE%3E3112229314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112229314&rft_id=info:pmid/&rft_ieee_id=10645748&rfr_iscdi=true |