CAMP: A Cross-View Geo-Localization Method Using Contrastive Attributes Mining and Position-Aware Partitioning

Cross-view geo-localization (CVGL) task aims to utilize geographic data, such as maps or high-resolution satellite images, as reference to estimate the positions of a ground- or near-ground- captured query image. This task is particularly challenging due to the significant changes in visual appearan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14
Hauptverfasser: Wu, Qiong, Wan, Yi, Zheng, Zhi, Zhang, Yongjun, Wang, Guangshuai, Zhao, Zhenyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Wu, Qiong
Wan, Yi
Zheng, Zhi
Zhang, Yongjun
Wang, Guangshuai
Zhao, Zhenyang
description Cross-view geo-localization (CVGL) task aims to utilize geographic data, such as maps or high-resolution satellite images, as reference to estimate the positions of a ground- or near-ground- captured query image. This task is particularly challenging due to the significant changes in visual appearance resulting from the extreme viewpoint variations. To address this challenge, a range of innovative methods have been proposed. However, intra-scene geometric information and inter-scene discriminative representation are not fully explored. In this article, we propose a novel CVGL method using contrastive attributes mining and position-aware partitioning (CAMP), which incorporates a position-aware partition branch (PPB) and a contrastive attributes mining (CAM) strategy. PPB learns fine-grained local features of different parts and captures their spatial information, providing a comprehensive understanding of scenes from both textual and spatial perspectives. CAM establishes supervision of the negative samples based on the images from the same platform, empowering the model to better discern differences between distinct scenes without extra memory cost. The proposed CAMP surpasses existing methods, achieving state-of-the-art results on the satellite-drone CVGL datasets University-1652 and SUES-200. Additionally, our method also outperforms existing methods in cross-dataset generalization, achieving an 8.85% increase in R@1 when trained on the University-1652 dataset and tested on the SUES-200 dataset at a height of 150 m. Our code and model are available at https://github.com/Mabel0403/CAMP .
doi_str_mv 10.1109/TGRS.2024.3448499
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10644040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10644040</ieee_id><sourcerecordid>10_1109_TGRS_2024_3448499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-304b6daa22a58df4c479d3c9fd1a3092640e5a61fe2ba894726a5b919ef7d4e03</originalsourceid><addsrcrecordid>eNpNkN1Kw0AQRhdRsFYfQPBiX2Dr7mbys96FoFVosWjrbZgkE12pieyuLfr0NrYXXg3D952BOYxdKjlRSprr5fTpeaKlhkkEkIExR2yk4jgTMgE4ZiOpTCJ0ZvQpO_P-XUoFsUpHrCvy-eKG57xwvffixdKWT6kXs77Gtf3BYPuOzym89Q1fedu98qLvgkMf7IZ4HoKz1Vcgz-e2G1LsGr7ovR04kW_REV-gC3_7Lj9nJy2uPV0c5pit7m6Xxb2YPU4finwmagVZEJGEKmkQtcY4a1qoITVNVJu2URhJoxOQFGOiWtIVZgZSnWBcGWWoTRsgGY2Z2t-th7ccteWnsx_ovksly0FYOQgrB2HlQdiOudozloj-9XcCJcjoF358aKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CAMP: A Cross-View Geo-Localization Method Using Contrastive Attributes Mining and Position-Aware Partitioning</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Qiong ; Wan, Yi ; Zheng, Zhi ; Zhang, Yongjun ; Wang, Guangshuai ; Zhao, Zhenyang</creator><creatorcontrib>Wu, Qiong ; Wan, Yi ; Zheng, Zhi ; Zhang, Yongjun ; Wang, Guangshuai ; Zhao, Zhenyang</creatorcontrib><description>Cross-view geo-localization (CVGL) task aims to utilize geographic data, such as maps or high-resolution satellite images, as reference to estimate the positions of a ground- or near-ground- captured query image. This task is particularly challenging due to the significant changes in visual appearance resulting from the extreme viewpoint variations. To address this challenge, a range of innovative methods have been proposed. However, intra-scene geometric information and inter-scene discriminative representation are not fully explored. In this article, we propose a novel CVGL method using contrastive attributes mining and position-aware partitioning (CAMP), which incorporates a position-aware partition branch (PPB) and a contrastive attributes mining (CAM) strategy. PPB learns fine-grained local features of different parts and captures their spatial information, providing a comprehensive understanding of scenes from both textual and spatial perspectives. CAM establishes supervision of the negative samples based on the images from the same platform, empowering the model to better discern differences between distinct scenes without extra memory cost. The proposed CAMP surpasses existing methods, achieving state-of-the-art results on the satellite-drone CVGL datasets University-1652 and SUES-200. Additionally, our method also outperforms existing methods in cross-dataset generalization, achieving an 8.85% increase in R@1 when trained on the University-1652 dataset and tested on the SUES-200 dataset at a height of 150 m. Our code and model are available at https://github.com/Mabel0403/CAMP .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3448499</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Contrastive learning ; Cross-view geo-localization (CVGL) ; Data mining ; Drones ; Feature extraction ; image retrieval ; remote sensing ; satellite image ; Satellite images ; Task analysis ; unmanned aerial vehicles (UAVs) ; Visualization</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-304b6daa22a58df4c479d3c9fd1a3092640e5a61fe2ba894726a5b919ef7d4e03</cites><orcidid>0000-0001-6777-6047 ; 0000-0001-9845-4251</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10644040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10644040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Wan, Yi</creatorcontrib><creatorcontrib>Zheng, Zhi</creatorcontrib><creatorcontrib>Zhang, Yongjun</creatorcontrib><creatorcontrib>Wang, Guangshuai</creatorcontrib><creatorcontrib>Zhao, Zhenyang</creatorcontrib><title>CAMP: A Cross-View Geo-Localization Method Using Contrastive Attributes Mining and Position-Aware Partitioning</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Cross-view geo-localization (CVGL) task aims to utilize geographic data, such as maps or high-resolution satellite images, as reference to estimate the positions of a ground- or near-ground- captured query image. This task is particularly challenging due to the significant changes in visual appearance resulting from the extreme viewpoint variations. To address this challenge, a range of innovative methods have been proposed. However, intra-scene geometric information and inter-scene discriminative representation are not fully explored. In this article, we propose a novel CVGL method using contrastive attributes mining and position-aware partitioning (CAMP), which incorporates a position-aware partition branch (PPB) and a contrastive attributes mining (CAM) strategy. PPB learns fine-grained local features of different parts and captures their spatial information, providing a comprehensive understanding of scenes from both textual and spatial perspectives. CAM establishes supervision of the negative samples based on the images from the same platform, empowering the model to better discern differences between distinct scenes without extra memory cost. The proposed CAMP surpasses existing methods, achieving state-of-the-art results on the satellite-drone CVGL datasets University-1652 and SUES-200. Additionally, our method also outperforms existing methods in cross-dataset generalization, achieving an 8.85% increase in R@1 when trained on the University-1652 dataset and tested on the SUES-200 dataset at a height of 150 m. Our code and model are available at https://github.com/Mabel0403/CAMP .</description><subject>Contrastive learning</subject><subject>Cross-view geo-localization (CVGL)</subject><subject>Data mining</subject><subject>Drones</subject><subject>Feature extraction</subject><subject>image retrieval</subject><subject>remote sensing</subject><subject>satellite image</subject><subject>Satellite images</subject><subject>Task analysis</subject><subject>unmanned aerial vehicles (UAVs)</subject><subject>Visualization</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1Kw0AQRhdRsFYfQPBiX2Dr7mbys96FoFVosWjrbZgkE12pieyuLfr0NrYXXg3D952BOYxdKjlRSprr5fTpeaKlhkkEkIExR2yk4jgTMgE4ZiOpTCJ0ZvQpO_P-XUoFsUpHrCvy-eKG57xwvffixdKWT6kXs77Gtf3BYPuOzym89Q1fedu98qLvgkMf7IZ4HoKz1Vcgz-e2G1LsGr7ovR04kW_REV-gC3_7Lj9nJy2uPV0c5pit7m6Xxb2YPU4finwmagVZEJGEKmkQtcY4a1qoITVNVJu2URhJoxOQFGOiWtIVZgZSnWBcGWWoTRsgGY2Z2t-th7ccteWnsx_ovksly0FYOQgrB2HlQdiOudozloj-9XcCJcjoF358aKY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wu, Qiong</creator><creator>Wan, Yi</creator><creator>Zheng, Zhi</creator><creator>Zhang, Yongjun</creator><creator>Wang, Guangshuai</creator><creator>Zhao, Zhenyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6777-6047</orcidid><orcidid>https://orcid.org/0000-0001-9845-4251</orcidid></search><sort><creationdate>2024</creationdate><title>CAMP: A Cross-View Geo-Localization Method Using Contrastive Attributes Mining and Position-Aware Partitioning</title><author>Wu, Qiong ; Wan, Yi ; Zheng, Zhi ; Zhang, Yongjun ; Wang, Guangshuai ; Zhao, Zhenyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-304b6daa22a58df4c479d3c9fd1a3092640e5a61fe2ba894726a5b919ef7d4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Contrastive learning</topic><topic>Cross-view geo-localization (CVGL)</topic><topic>Data mining</topic><topic>Drones</topic><topic>Feature extraction</topic><topic>image retrieval</topic><topic>remote sensing</topic><topic>satellite image</topic><topic>Satellite images</topic><topic>Task analysis</topic><topic>unmanned aerial vehicles (UAVs)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiong</creatorcontrib><creatorcontrib>Wan, Yi</creatorcontrib><creatorcontrib>Zheng, Zhi</creatorcontrib><creatorcontrib>Zhang, Yongjun</creatorcontrib><creatorcontrib>Wang, Guangshuai</creatorcontrib><creatorcontrib>Zhao, Zhenyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Qiong</au><au>Wan, Yi</au><au>Zheng, Zhi</au><au>Zhang, Yongjun</au><au>Wang, Guangshuai</au><au>Zhao, Zhenyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CAMP: A Cross-View Geo-Localization Method Using Contrastive Attributes Mining and Position-Aware Partitioning</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Cross-view geo-localization (CVGL) task aims to utilize geographic data, such as maps or high-resolution satellite images, as reference to estimate the positions of a ground- or near-ground- captured query image. This task is particularly challenging due to the significant changes in visual appearance resulting from the extreme viewpoint variations. To address this challenge, a range of innovative methods have been proposed. However, intra-scene geometric information and inter-scene discriminative representation are not fully explored. In this article, we propose a novel CVGL method using contrastive attributes mining and position-aware partitioning (CAMP), which incorporates a position-aware partition branch (PPB) and a contrastive attributes mining (CAM) strategy. PPB learns fine-grained local features of different parts and captures their spatial information, providing a comprehensive understanding of scenes from both textual and spatial perspectives. CAM establishes supervision of the negative samples based on the images from the same platform, empowering the model to better discern differences between distinct scenes without extra memory cost. The proposed CAMP surpasses existing methods, achieving state-of-the-art results on the satellite-drone CVGL datasets University-1652 and SUES-200. Additionally, our method also outperforms existing methods in cross-dataset generalization, achieving an 8.85% increase in R@1 when trained on the University-1652 dataset and tested on the SUES-200 dataset at a height of 150 m. Our code and model are available at https://github.com/Mabel0403/CAMP .</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3448499</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6777-6047</orcidid><orcidid>https://orcid.org/0000-0001-9845-4251</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10644040
source IEEE Electronic Library (IEL)
subjects Contrastive learning
Cross-view geo-localization (CVGL)
Data mining
Drones
Feature extraction
image retrieval
remote sensing
satellite image
Satellite images
Task analysis
unmanned aerial vehicles (UAVs)
Visualization
title CAMP: A Cross-View Geo-Localization Method Using Contrastive Attributes Mining and Position-Aware Partitioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CAMP:%20A%20Cross-View%20Geo-Localization%20Method%20Using%20Contrastive%20Attributes%20Mining%20and%20Position-Aware%20Partitioning&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wu,%20Qiong&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3448499&rft_dat=%3Ccrossref_RIE%3E10_1109_TGRS_2024_3448499%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10644040&rfr_iscdi=true