Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications

This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al _{{1}-{x}} Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-10, Vol.71 (10), p.6329-6335
Hauptverfasser: Zhou, Congquan, Dou, Wentong, Qin, Ruidong, Lu, Jinghong, Yang, Yumeng, Mu, Zhiqiang, Yu, Wenjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6335
container_issue 10
container_start_page 6329
container_title IEEE transactions on electron devices
container_volume 71
creator Zhou, Congquan
Dou, Wentong
Qin, Ruidong
Lu, Jinghong
Yang, Yumeng
Mu, Zhiqiang
Yu, Wenjie
description This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al _{{1}-{x}} Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanical coupling coefficient ( {k} ^{{2}}_{\text {eff}} ) of 21% for Al _{{1}-{x}} Sc x N BAW resonators operating above 4 GHz. A novel two-step method was proposed to obtain high crystalline quality Al 0.7 Sc 0.3 N films, characterized by the full-width at half-maximum (FWHM) of 0.73° in (0002) X-ray diffraction (XRD) and the absence of abnormal oriented grains (AOGs). The resonator unit, designed without lateral airgaps, doubles the thermal conductivity and significantly reduces the maximum stress of the suspended film stack by an order of magnitude. The novel cavity-embedded fabrication process combined with the lateral-airgapless device design offers excellent mechanical stability and manufacturing feasibility of BAW filters. The fabricated 4.39-GHz single crystal Al 0.7 Sc 0.3 N BAW resonators exhibit exceptional {k} ^{{2}}_{\text {eff}} , leveraging the high crystallinity of Al 0.7 Sc 0.3 N film, surface-intact device design, and feasible fabrication process. Additionally, a 4.43-GHz ladder-typed filter was demonstrated with a −3-dB fractional bandwidth of 9.0%. This work paves the path toward the development of the next-generation high-frequency and wideband acoustic filters for emerging 5G and Wi-Fi wireless communications.
doi_str_mv 10.1109/TED.2024.3443237
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10643880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643880</ieee_id><sourcerecordid>10_1109_TED_2024_3443237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-101416c612c77c0687b030a67b54e348c76fa7ef146e1014e6f2edfad95cfa63</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhS0EEqWwMzD4BVLs2LGTMfQXqQKJVmKMXOe6GEKS2umQkb4Cb9gnIVE7sJx7rnTOGT6E7ikZUUqSx_V0MgpJyEeMcxYyeYEGNIpkkAguLtGAEBoHCYvZNbrx_rN7BefhAO0WdvtRtHhS1ZDjlS23BeCxa32jCpwWx8NPcDz8rnQnL_hpX3zhVFd731iN38BXpWoq57GpHO6HgpmD3R5K3WJV5vjd5rDpTVrXhdWqsVXpb9GVUYWHu_MdovVsuh4vguXr_HmcLgNNuWwCSiinQgsaaik1EbHcEEaUkJuIA-OxlsIoCYZyAX0WhAkhNypPIm2UYENETrPaVd47MFnt7LdybUZJ1hPLOmJZTyw7E-sqD6eKBYB_ccFZHBP2B9PAarQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Congquan ; Dou, Wentong ; Qin, Ruidong ; Lu, Jinghong ; Yang, Yumeng ; Mu, Zhiqiang ; Yu, Wenjie</creator><creatorcontrib>Zhou, Congquan ; Dou, Wentong ; Qin, Ruidong ; Lu, Jinghong ; Yang, Yumeng ; Mu, Zhiqiang ; Yu, Wenjie</creatorcontrib><description><![CDATA[This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanical coupling coefficient (<inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>) of 21% for Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N BAW resonators operating above 4 GHz. A novel two-step method was proposed to obtain high crystalline quality Al 0.7 Sc 0.3 N films, characterized by the full-width at half-maximum (FWHM) of 0.73° in (0002) X-ray diffraction (XRD) and the absence of abnormal oriented grains (AOGs). The resonator unit, designed without lateral airgaps, doubles the thermal conductivity and significantly reduces the maximum stress of the suspended film stack by an order of magnitude. The novel cavity-embedded fabrication process combined with the lateral-airgapless device design offers excellent mechanical stability and manufacturing feasibility of BAW filters. The fabricated 4.39-GHz single crystal Al 0.7 Sc 0.3 N BAW resonators exhibit exceptional <inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>, leveraging the high crystallinity of Al 0.7 Sc 0.3 N film, surface-intact device design, and feasible fabrication process. Additionally, a 4.43-GHz ladder-typed filter was demonstrated with a −3-dB fractional bandwidth of 9.0%. This work paves the path toward the development of the next-generation high-frequency and wideband acoustic filters for emerging 5G and Wi-Fi wireless communications.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3443237</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic resonator ; Aluminum nitride ; aluminum scandium (Sc) nitride ; bulk acoustic wave (BAW) filter ; cavity-embedded ; III-V semiconductor materials ; Piezoelectric films ; Resonators ; Rough surfaces ; single crystal ; Stress ; Surface roughness</subject><ispartof>IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6329-6335</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-101416c612c77c0687b030a67b54e348c76fa7ef146e1014e6f2edfad95cfa63</cites><orcidid>0000-0002-3406-8957 ; 0009-0005-7808-4317 ; 0009-0009-1937-2692 ; 0000-0002-4119-1312 ; 0000-0002-8071-4470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Congquan</creatorcontrib><creatorcontrib>Dou, Wentong</creatorcontrib><creatorcontrib>Qin, Ruidong</creatorcontrib><creatorcontrib>Lu, Jinghong</creatorcontrib><creatorcontrib>Yang, Yumeng</creatorcontrib><creatorcontrib>Mu, Zhiqiang</creatorcontrib><creatorcontrib>Yu, Wenjie</creatorcontrib><title>Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanical coupling coefficient (<inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>) of 21% for Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N BAW resonators operating above 4 GHz. A novel two-step method was proposed to obtain high crystalline quality Al 0.7 Sc 0.3 N films, characterized by the full-width at half-maximum (FWHM) of 0.73° in (0002) X-ray diffraction (XRD) and the absence of abnormal oriented grains (AOGs). The resonator unit, designed without lateral airgaps, doubles the thermal conductivity and significantly reduces the maximum stress of the suspended film stack by an order of magnitude. The novel cavity-embedded fabrication process combined with the lateral-airgapless device design offers excellent mechanical stability and manufacturing feasibility of BAW filters. The fabricated 4.39-GHz single crystal Al 0.7 Sc 0.3 N BAW resonators exhibit exceptional <inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>, leveraging the high crystallinity of Al 0.7 Sc 0.3 N film, surface-intact device design, and feasible fabrication process. Additionally, a 4.43-GHz ladder-typed filter was demonstrated with a −3-dB fractional bandwidth of 9.0%. This work paves the path toward the development of the next-generation high-frequency and wideband acoustic filters for emerging 5G and Wi-Fi wireless communications.]]></description><subject>Acoustic resonator</subject><subject>Aluminum nitride</subject><subject>aluminum scandium (Sc) nitride</subject><subject>bulk acoustic wave (BAW) filter</subject><subject>cavity-embedded</subject><subject>III-V semiconductor materials</subject><subject>Piezoelectric films</subject><subject>Resonators</subject><subject>Rough surfaces</subject><subject>single crystal</subject><subject>Stress</subject><subject>Surface roughness</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAUhS0EEqWwMzD4BVLs2LGTMfQXqQKJVmKMXOe6GEKS2umQkb4Cb9gnIVE7sJx7rnTOGT6E7ikZUUqSx_V0MgpJyEeMcxYyeYEGNIpkkAguLtGAEBoHCYvZNbrx_rN7BefhAO0WdvtRtHhS1ZDjlS23BeCxa32jCpwWx8NPcDz8rnQnL_hpX3zhVFd731iN38BXpWoq57GpHO6HgpmD3R5K3WJV5vjd5rDpTVrXhdWqsVXpb9GVUYWHu_MdovVsuh4vguXr_HmcLgNNuWwCSiinQgsaaik1EbHcEEaUkJuIA-OxlsIoCYZyAX0WhAkhNypPIm2UYENETrPaVd47MFnt7LdybUZJ1hPLOmJZTyw7E-sqD6eKBYB_ccFZHBP2B9PAarQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhou, Congquan</creator><creator>Dou, Wentong</creator><creator>Qin, Ruidong</creator><creator>Lu, Jinghong</creator><creator>Yang, Yumeng</creator><creator>Mu, Zhiqiang</creator><creator>Yu, Wenjie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3406-8957</orcidid><orcidid>https://orcid.org/0009-0005-7808-4317</orcidid><orcidid>https://orcid.org/0009-0009-1937-2692</orcidid><orcidid>https://orcid.org/0000-0002-4119-1312</orcidid><orcidid>https://orcid.org/0000-0002-8071-4470</orcidid></search><sort><creationdate>202410</creationdate><title>Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications</title><author>Zhou, Congquan ; Dou, Wentong ; Qin, Ruidong ; Lu, Jinghong ; Yang, Yumeng ; Mu, Zhiqiang ; Yu, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-101416c612c77c0687b030a67b54e348c76fa7ef146e1014e6f2edfad95cfa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic resonator</topic><topic>Aluminum nitride</topic><topic>aluminum scandium (Sc) nitride</topic><topic>bulk acoustic wave (BAW) filter</topic><topic>cavity-embedded</topic><topic>III-V semiconductor materials</topic><topic>Piezoelectric films</topic><topic>Resonators</topic><topic>Rough surfaces</topic><topic>single crystal</topic><topic>Stress</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Congquan</creatorcontrib><creatorcontrib>Dou, Wentong</creatorcontrib><creatorcontrib>Qin, Ruidong</creatorcontrib><creatorcontrib>Lu, Jinghong</creatorcontrib><creatorcontrib>Yang, Yumeng</creatorcontrib><creatorcontrib>Mu, Zhiqiang</creatorcontrib><creatorcontrib>Yu, Wenjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Congquan</au><au>Dou, Wentong</au><au>Qin, Ruidong</au><au>Lu, Jinghong</au><au>Yang, Yumeng</au><au>Mu, Zhiqiang</au><au>Yu, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-10</date><risdate>2024</risdate><volume>71</volume><issue>10</issue><spage>6329</spage><epage>6335</epage><pages>6329-6335</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanical coupling coefficient (<inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>) of 21% for Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N BAW resonators operating above 4 GHz. A novel two-step method was proposed to obtain high crystalline quality Al 0.7 Sc 0.3 N films, characterized by the full-width at half-maximum (FWHM) of 0.73° in (0002) X-ray diffraction (XRD) and the absence of abnormal oriented grains (AOGs). The resonator unit, designed without lateral airgaps, doubles the thermal conductivity and significantly reduces the maximum stress of the suspended film stack by an order of magnitude. The novel cavity-embedded fabrication process combined with the lateral-airgapless device design offers excellent mechanical stability and manufacturing feasibility of BAW filters. The fabricated 4.39-GHz single crystal Al 0.7 Sc 0.3 N BAW resonators exhibit exceptional <inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>, leveraging the high crystallinity of Al 0.7 Sc 0.3 N film, surface-intact device design, and feasible fabrication process. Additionally, a 4.43-GHz ladder-typed filter was demonstrated with a −3-dB fractional bandwidth of 9.0%. This work paves the path toward the development of the next-generation high-frequency and wideband acoustic filters for emerging 5G and Wi-Fi wireless communications.]]></abstract><pub>IEEE</pub><doi>10.1109/TED.2024.3443237</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3406-8957</orcidid><orcidid>https://orcid.org/0009-0005-7808-4317</orcidid><orcidid>https://orcid.org/0009-0009-1937-2692</orcidid><orcidid>https://orcid.org/0000-0002-4119-1312</orcidid><orcidid>https://orcid.org/0000-0002-8071-4470</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6329-6335
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_10643880
source IEEE Electronic Library (IEL)
subjects Acoustic resonator
Aluminum nitride
aluminum scandium (Sc) nitride
bulk acoustic wave (BAW) filter
cavity-embedded
III-V semiconductor materials
Piezoelectric films
Resonators
Rough surfaces
single crystal
Stress
Surface roughness
title Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Doped%20Single%20Crystal%20Al%E2%82%81-%E2%82%93Sc%E2%82%93N%20Bulk%20Acoustic%20Resonators%20for%20High-Frequency%20and%20Wideband%20Applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zhou,%20Congquan&rft.date=2024-10&rft.volume=71&rft.issue=10&rft.spage=6329&rft.epage=6335&rft.pages=6329-6335&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3443237&rft_dat=%3Ccrossref_RIE%3E10_1109_TED_2024_3443237%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10643880&rfr_iscdi=true