Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications
This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al _{{1}-{x}} Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanica...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-10, Vol.71 (10), p.6329-6335 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6335 |
---|---|
container_issue | 10 |
container_start_page | 6329 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Zhou, Congquan Dou, Wentong Qin, Ruidong Lu, Jinghong Yang, Yumeng Mu, Zhiqiang Yu, Wenjie |
description | This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al _{{1}-{x}} Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanical coupling coefficient ( {k} ^{{2}}_{\text {eff}} ) of 21% for Al _{{1}-{x}} Sc x N BAW resonators operating above 4 GHz. A novel two-step method was proposed to obtain high crystalline quality Al 0.7 Sc 0.3 N films, characterized by the full-width at half-maximum (FWHM) of 0.73° in (0002) X-ray diffraction (XRD) and the absence of abnormal oriented grains (AOGs). The resonator unit, designed without lateral airgaps, doubles the thermal conductivity and significantly reduces the maximum stress of the suspended film stack by an order of magnitude. The novel cavity-embedded fabrication process combined with the lateral-airgapless device design offers excellent mechanical stability and manufacturing feasibility of BAW filters. The fabricated 4.39-GHz single crystal Al 0.7 Sc 0.3 N BAW resonators exhibit exceptional {k} ^{{2}}_{\text {eff}} , leveraging the high crystallinity of Al 0.7 Sc 0.3 N film, surface-intact device design, and feasible fabrication process. Additionally, a 4.43-GHz ladder-typed filter was demonstrated with a −3-dB fractional bandwidth of 9.0%. This work paves the path toward the development of the next-generation high-frequency and wideband acoustic filters for emerging 5G and Wi-Fi wireless communications. |
doi_str_mv | 10.1109/TED.2024.3443237 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10643880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643880</ieee_id><sourcerecordid>10_1109_TED_2024_3443237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-101416c612c77c0687b030a67b54e348c76fa7ef146e1014e6f2edfad95cfa63</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhS0EEqWwMzD4BVLs2LGTMfQXqQKJVmKMXOe6GEKS2umQkb4Cb9gnIVE7sJx7rnTOGT6E7ikZUUqSx_V0MgpJyEeMcxYyeYEGNIpkkAguLtGAEBoHCYvZNbrx_rN7BefhAO0WdvtRtHhS1ZDjlS23BeCxa32jCpwWx8NPcDz8rnQnL_hpX3zhVFd731iN38BXpWoq57GpHO6HgpmD3R5K3WJV5vjd5rDpTVrXhdWqsVXpb9GVUYWHu_MdovVsuh4vguXr_HmcLgNNuWwCSiinQgsaaik1EbHcEEaUkJuIA-OxlsIoCYZyAX0WhAkhNypPIm2UYENETrPaVd47MFnt7LdybUZJ1hPLOmJZTyw7E-sqD6eKBYB_ccFZHBP2B9PAarQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Congquan ; Dou, Wentong ; Qin, Ruidong ; Lu, Jinghong ; Yang, Yumeng ; Mu, Zhiqiang ; Yu, Wenjie</creator><creatorcontrib>Zhou, Congquan ; Dou, Wentong ; Qin, Ruidong ; Lu, Jinghong ; Yang, Yumeng ; Mu, Zhiqiang ; Yu, Wenjie</creatorcontrib><description><![CDATA[This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanical coupling coefficient (<inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>) of 21% for Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N BAW resonators operating above 4 GHz. A novel two-step method was proposed to obtain high crystalline quality Al 0.7 Sc 0.3 N films, characterized by the full-width at half-maximum (FWHM) of 0.73° in (0002) X-ray diffraction (XRD) and the absence of abnormal oriented grains (AOGs). The resonator unit, designed without lateral airgaps, doubles the thermal conductivity and significantly reduces the maximum stress of the suspended film stack by an order of magnitude. The novel cavity-embedded fabrication process combined with the lateral-airgapless device design offers excellent mechanical stability and manufacturing feasibility of BAW filters. The fabricated 4.39-GHz single crystal Al 0.7 Sc 0.3 N BAW resonators exhibit exceptional <inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>, leveraging the high crystallinity of Al 0.7 Sc 0.3 N film, surface-intact device design, and feasible fabrication process. Additionally, a 4.43-GHz ladder-typed filter was demonstrated with a −3-dB fractional bandwidth of 9.0%. This work paves the path toward the development of the next-generation high-frequency and wideband acoustic filters for emerging 5G and Wi-Fi wireless communications.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3443237</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic resonator ; Aluminum nitride ; aluminum scandium (Sc) nitride ; bulk acoustic wave (BAW) filter ; cavity-embedded ; III-V semiconductor materials ; Piezoelectric films ; Resonators ; Rough surfaces ; single crystal ; Stress ; Surface roughness</subject><ispartof>IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6329-6335</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-101416c612c77c0687b030a67b54e348c76fa7ef146e1014e6f2edfad95cfa63</cites><orcidid>0000-0002-3406-8957 ; 0009-0005-7808-4317 ; 0009-0009-1937-2692 ; 0000-0002-4119-1312 ; 0000-0002-8071-4470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643880$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643880$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Congquan</creatorcontrib><creatorcontrib>Dou, Wentong</creatorcontrib><creatorcontrib>Qin, Ruidong</creatorcontrib><creatorcontrib>Lu, Jinghong</creatorcontrib><creatorcontrib>Yang, Yumeng</creatorcontrib><creatorcontrib>Mu, Zhiqiang</creatorcontrib><creatorcontrib>Yu, Wenjie</creatorcontrib><title>Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanical coupling coefficient (<inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>) of 21% for Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N BAW resonators operating above 4 GHz. A novel two-step method was proposed to obtain high crystalline quality Al 0.7 Sc 0.3 N films, characterized by the full-width at half-maximum (FWHM) of 0.73° in (0002) X-ray diffraction (XRD) and the absence of abnormal oriented grains (AOGs). The resonator unit, designed without lateral airgaps, doubles the thermal conductivity and significantly reduces the maximum stress of the suspended film stack by an order of magnitude. The novel cavity-embedded fabrication process combined with the lateral-airgapless device design offers excellent mechanical stability and manufacturing feasibility of BAW filters. The fabricated 4.39-GHz single crystal Al 0.7 Sc 0.3 N BAW resonators exhibit exceptional <inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>, leveraging the high crystallinity of Al 0.7 Sc 0.3 N film, surface-intact device design, and feasible fabrication process. Additionally, a 4.43-GHz ladder-typed filter was demonstrated with a −3-dB fractional bandwidth of 9.0%. This work paves the path toward the development of the next-generation high-frequency and wideband acoustic filters for emerging 5G and Wi-Fi wireless communications.]]></description><subject>Acoustic resonator</subject><subject>Aluminum nitride</subject><subject>aluminum scandium (Sc) nitride</subject><subject>bulk acoustic wave (BAW) filter</subject><subject>cavity-embedded</subject><subject>III-V semiconductor materials</subject><subject>Piezoelectric films</subject><subject>Resonators</subject><subject>Rough surfaces</subject><subject>single crystal</subject><subject>Stress</subject><subject>Surface roughness</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAUhS0EEqWwMzD4BVLs2LGTMfQXqQKJVmKMXOe6GEKS2umQkb4Cb9gnIVE7sJx7rnTOGT6E7ikZUUqSx_V0MgpJyEeMcxYyeYEGNIpkkAguLtGAEBoHCYvZNbrx_rN7BefhAO0WdvtRtHhS1ZDjlS23BeCxa32jCpwWx8NPcDz8rnQnL_hpX3zhVFd731iN38BXpWoq57GpHO6HgpmD3R5K3WJV5vjd5rDpTVrXhdWqsVXpb9GVUYWHu_MdovVsuh4vguXr_HmcLgNNuWwCSiinQgsaaik1EbHcEEaUkJuIA-OxlsIoCYZyAX0WhAkhNypPIm2UYENETrPaVd47MFnt7LdybUZJ1hPLOmJZTyw7E-sqD6eKBYB_ccFZHBP2B9PAarQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhou, Congquan</creator><creator>Dou, Wentong</creator><creator>Qin, Ruidong</creator><creator>Lu, Jinghong</creator><creator>Yang, Yumeng</creator><creator>Mu, Zhiqiang</creator><creator>Yu, Wenjie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3406-8957</orcidid><orcidid>https://orcid.org/0009-0005-7808-4317</orcidid><orcidid>https://orcid.org/0009-0009-1937-2692</orcidid><orcidid>https://orcid.org/0000-0002-4119-1312</orcidid><orcidid>https://orcid.org/0000-0002-8071-4470</orcidid></search><sort><creationdate>202410</creationdate><title>Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications</title><author>Zhou, Congquan ; Dou, Wentong ; Qin, Ruidong ; Lu, Jinghong ; Yang, Yumeng ; Mu, Zhiqiang ; Yu, Wenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-101416c612c77c0687b030a67b54e348c76fa7ef146e1014e6f2edfad95cfa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic resonator</topic><topic>Aluminum nitride</topic><topic>aluminum scandium (Sc) nitride</topic><topic>bulk acoustic wave (BAW) filter</topic><topic>cavity-embedded</topic><topic>III-V semiconductor materials</topic><topic>Piezoelectric films</topic><topic>Resonators</topic><topic>Rough surfaces</topic><topic>single crystal</topic><topic>Stress</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Congquan</creatorcontrib><creatorcontrib>Dou, Wentong</creatorcontrib><creatorcontrib>Qin, Ruidong</creatorcontrib><creatorcontrib>Lu, Jinghong</creatorcontrib><creatorcontrib>Yang, Yumeng</creatorcontrib><creatorcontrib>Mu, Zhiqiang</creatorcontrib><creatorcontrib>Yu, Wenjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Congquan</au><au>Dou, Wentong</au><au>Qin, Ruidong</au><au>Lu, Jinghong</au><au>Yang, Yumeng</au><au>Mu, Zhiqiang</au><au>Yu, Wenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-10</date><risdate>2024</risdate><volume>71</volume><issue>10</issue><spage>6329</spage><epage>6335</epage><pages>6329-6335</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This work reports a super high-frequency (SHF) bulk acoustic wave (BAW) resonator, utilizing a single crystal aluminum scandium (Sc) nitride (Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N) piezoelectric film with 30% Sc concentration, fabricated by a novel cavity-embedded process and exhibiting an effective electromechanical coupling coefficient (<inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>) of 21% for Al<inline-formula> <tex-math notation="LaTeX">_{{1}-{x}} </tex-math></inline-formula>Sc x N BAW resonators operating above 4 GHz. A novel two-step method was proposed to obtain high crystalline quality Al 0.7 Sc 0.3 N films, characterized by the full-width at half-maximum (FWHM) of 0.73° in (0002) X-ray diffraction (XRD) and the absence of abnormal oriented grains (AOGs). The resonator unit, designed without lateral airgaps, doubles the thermal conductivity and significantly reduces the maximum stress of the suspended film stack by an order of magnitude. The novel cavity-embedded fabrication process combined with the lateral-airgapless device design offers excellent mechanical stability and manufacturing feasibility of BAW filters. The fabricated 4.39-GHz single crystal Al 0.7 Sc 0.3 N BAW resonators exhibit exceptional <inline-formula> <tex-math notation="LaTeX">{k} ^{{2}}_{\text {eff}} </tex-math></inline-formula>, leveraging the high crystallinity of Al 0.7 Sc 0.3 N film, surface-intact device design, and feasible fabrication process. Additionally, a 4.43-GHz ladder-typed filter was demonstrated with a −3-dB fractional bandwidth of 9.0%. This work paves the path toward the development of the next-generation high-frequency and wideband acoustic filters for emerging 5G and Wi-Fi wireless communications.]]></abstract><pub>IEEE</pub><doi>10.1109/TED.2024.3443237</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3406-8957</orcidid><orcidid>https://orcid.org/0009-0005-7808-4317</orcidid><orcidid>https://orcid.org/0009-0009-1937-2692</orcidid><orcidid>https://orcid.org/0000-0002-4119-1312</orcidid><orcidid>https://orcid.org/0000-0002-8071-4470</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6329-6335 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_10643880 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic resonator Aluminum nitride aluminum scandium (Sc) nitride bulk acoustic wave (BAW) filter cavity-embedded III-V semiconductor materials Piezoelectric films Resonators Rough surfaces single crystal Stress Surface roughness |
title | Highly Doped Single Crystal Al₁-ₓScₓN Bulk Acoustic Resonators for High-Frequency and Wideband Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Doped%20Single%20Crystal%20Al%E2%82%81-%E2%82%93Sc%E2%82%93N%20Bulk%20Acoustic%20Resonators%20for%20High-Frequency%20and%20Wideband%20Applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zhou,%20Congquan&rft.date=2024-10&rft.volume=71&rft.issue=10&rft.spage=6329&rft.epage=6335&rft.pages=6329-6335&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3443237&rft_dat=%3Ccrossref_RIE%3E10_1109_TED_2024_3443237%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10643880&rfr_iscdi=true |