Sparse Attention-Driven Quality Prediction for Production Process Optimization in Digital Twins

In the process industry, long-term and efficient optimization of production lines requires real-time monitoring and analysis of operational states to fine-tune production line parameters. However, complexity in operational logic and intricate coupling of production process parameters make it difficu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-12, Vol.11 (23), p.38569-38584
Hauptverfasser: Yin, Yanlei, Wang, Lihua, Thai Hoang, Dinh, Wang, Wenbo, Niyato, Dusit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38584
container_issue 23
container_start_page 38569
container_title IEEE internet of things journal
container_volume 11
creator Yin, Yanlei
Wang, Lihua
Thai Hoang, Dinh
Wang, Wenbo
Niyato, Dusit
description In the process industry, long-term and efficient optimization of production lines requires real-time monitoring and analysis of operational states to fine-tune production line parameters. However, complexity in operational logic and intricate coupling of production process parameters make it difficult to develop an accurate mathematical model for the entire process, thus hindering the deployment of efficient optimization mechanisms. In view of these difficulties, we propose to deploy a digital twin (DT) of the production line by encoding its operational logic in a data-driven approach. By iteratively mapping the real-world data reflecting equipment operation status and product quality indicators in the DT, we adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks (NNs). This model enables the data-driven state evolution of the DT. The DT takes a role of aggregating the information of actual operating conditions and the results of quality-sensitive analysis, which facilitates the optimization of process production with virtual-reality evolution. Leveraging the DT as an information-flow carrier, we extract temporal features from key process indicators and establish a production process quality prediction model based on the proposed deep NN. Our operation experiments on a specific tobacco shredding line demonstrate that the proposed DT-based production process optimization method fosters seamless integration between virtual and real production lines. This integration achieves an average operating status prediction accuracy of over 98% and a product quality acceptance rate of over 96%.
doi_str_mv 10.1109/JIOT.2024.3448256
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10643589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643589</ieee_id><sourcerecordid>3130932467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-daa70816d6a652a6cd96cdf85b0787681586a023301f4fe1fd83e85bff6e018f3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIVKUfgMQhEucUv-I4x6rlUVSpIMrZMskauWqTYDug8vU4pIceVruzM7MrDULXBE8JwcXd83K9mVJM-ZRxLmkmztCIMpqnXAh6fjJfoon3W4xxtGWkECOk3lrtPCSzEKAOtqnThbPfUCevnd7ZcEheHFS27JnENC7CpuoGGMcSvE_WbbB7-6v_l7ZOFvbTBr1LNj-29lfowuidh8mxj9H7w_1m_pSu1o_L-WyVlpQUIa20zrEkohJaZFSLsipiGZl94FzmQpJMCo0pY5gYboCYSjKIrDECMJGGjdHtcLd1zVcHPqht07k6vlSMMFwwykUeVWRQla7x3oFRrbN77Q6KYNVHqfooVR-lOkYZPTeDxwLAiV5wlsmC_QGnwnB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130932467</pqid></control><display><type>article</type><title>Sparse Attention-Driven Quality Prediction for Production Process Optimization in Digital Twins</title><source>IEEE Electronic Library (IEL)</source><creator>Yin, Yanlei ; Wang, Lihua ; Thai Hoang, Dinh ; Wang, Wenbo ; Niyato, Dusit</creator><creatorcontrib>Yin, Yanlei ; Wang, Lihua ; Thai Hoang, Dinh ; Wang, Wenbo ; Niyato, Dusit</creatorcontrib><description>In the process industry, long-term and efficient optimization of production lines requires real-time monitoring and analysis of operational states to fine-tune production line parameters. However, complexity in operational logic and intricate coupling of production process parameters make it difficult to develop an accurate mathematical model for the entire process, thus hindering the deployment of efficient optimization mechanisms. In view of these difficulties, we propose to deploy a digital twin (DT) of the production line by encoding its operational logic in a data-driven approach. By iteratively mapping the real-world data reflecting equipment operation status and product quality indicators in the DT, we adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks (NNs). This model enables the data-driven state evolution of the DT. The DT takes a role of aggregating the information of actual operating conditions and the results of quality-sensitive analysis, which facilitates the optimization of process production with virtual-reality evolution. Leveraging the DT as an information-flow carrier, we extract temporal features from key process indicators and establish a production process quality prediction model based on the proposed deep NN. Our operation experiments on a specific tobacco shredding line demonstrate that the proposed DT-based production process optimization method fosters seamless integration between virtual and real production lines. This integration achieves an average operating status prediction accuracy of over 98% and a product quality acceptance rate of over 96%.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3448256</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Assembly lines ; Deep learning ; Depth indicators ; digital twin (DT) ; Digital twins ; Indicators ; Industries ; Information flow ; Manufacturing ; Optimization ; Prediction models ; predictive optimization ; Process control ; Process parameters ; process production line ; Product quality ; Production ; Production lines ; Quality assessment ; Real time operation ; self-attention ; Shredding ; Tobacco ; Virtual reality</subject><ispartof>IEEE internet of things journal, 2024-12, Vol.11 (23), p.38569-38584</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7071-4565 ; 0000-0003-1528-394X ; 0000-0002-7442-7416 ; 0000-0002-9528-0863 ; 0000-0002-7500-8723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yin, Yanlei</creatorcontrib><creatorcontrib>Wang, Lihua</creatorcontrib><creatorcontrib>Thai Hoang, Dinh</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><title>Sparse Attention-Driven Quality Prediction for Production Process Optimization in Digital Twins</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In the process industry, long-term and efficient optimization of production lines requires real-time monitoring and analysis of operational states to fine-tune production line parameters. However, complexity in operational logic and intricate coupling of production process parameters make it difficult to develop an accurate mathematical model for the entire process, thus hindering the deployment of efficient optimization mechanisms. In view of these difficulties, we propose to deploy a digital twin (DT) of the production line by encoding its operational logic in a data-driven approach. By iteratively mapping the real-world data reflecting equipment operation status and product quality indicators in the DT, we adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks (NNs). This model enables the data-driven state evolution of the DT. The DT takes a role of aggregating the information of actual operating conditions and the results of quality-sensitive analysis, which facilitates the optimization of process production with virtual-reality evolution. Leveraging the DT as an information-flow carrier, we extract temporal features from key process indicators and establish a production process quality prediction model based on the proposed deep NN. Our operation experiments on a specific tobacco shredding line demonstrate that the proposed DT-based production process optimization method fosters seamless integration between virtual and real production lines. This integration achieves an average operating status prediction accuracy of over 98% and a product quality acceptance rate of over 96%.</description><subject>Artificial neural networks</subject><subject>Assembly lines</subject><subject>Deep learning</subject><subject>Depth indicators</subject><subject>digital twin (DT)</subject><subject>Digital twins</subject><subject>Indicators</subject><subject>Industries</subject><subject>Information flow</subject><subject>Manufacturing</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>predictive optimization</subject><subject>Process control</subject><subject>Process parameters</subject><subject>process production line</subject><subject>Product quality</subject><subject>Production</subject><subject>Production lines</subject><subject>Quality assessment</subject><subject>Real time operation</subject><subject>self-attention</subject><subject>Shredding</subject><subject>Tobacco</subject><subject>Virtual reality</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIVKUfgMQhEucUv-I4x6rlUVSpIMrZMskauWqTYDug8vU4pIceVruzM7MrDULXBE8JwcXd83K9mVJM-ZRxLmkmztCIMpqnXAh6fjJfoon3W4xxtGWkECOk3lrtPCSzEKAOtqnThbPfUCevnd7ZcEheHFS27JnENC7CpuoGGMcSvE_WbbB7-6v_l7ZOFvbTBr1LNj-29lfowuidh8mxj9H7w_1m_pSu1o_L-WyVlpQUIa20zrEkohJaZFSLsipiGZl94FzmQpJMCo0pY5gYboCYSjKIrDECMJGGjdHtcLd1zVcHPqht07k6vlSMMFwwykUeVWRQla7x3oFRrbN77Q6KYNVHqfooVR-lOkYZPTeDxwLAiV5wlsmC_QGnwnB0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yin, Yanlei</creator><creator>Wang, Lihua</creator><creator>Thai Hoang, Dinh</creator><creator>Wang, Wenbo</creator><creator>Niyato, Dusit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7071-4565</orcidid><orcidid>https://orcid.org/0000-0003-1528-394X</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid><orcidid>https://orcid.org/0000-0002-9528-0863</orcidid><orcidid>https://orcid.org/0000-0002-7500-8723</orcidid></search><sort><creationdate>20241201</creationdate><title>Sparse Attention-Driven Quality Prediction for Production Process Optimization in Digital Twins</title><author>Yin, Yanlei ; Wang, Lihua ; Thai Hoang, Dinh ; Wang, Wenbo ; Niyato, Dusit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-daa70816d6a652a6cd96cdf85b0787681586a023301f4fe1fd83e85bff6e018f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Assembly lines</topic><topic>Deep learning</topic><topic>Depth indicators</topic><topic>digital twin (DT)</topic><topic>Digital twins</topic><topic>Indicators</topic><topic>Industries</topic><topic>Information flow</topic><topic>Manufacturing</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>predictive optimization</topic><topic>Process control</topic><topic>Process parameters</topic><topic>process production line</topic><topic>Product quality</topic><topic>Production</topic><topic>Production lines</topic><topic>Quality assessment</topic><topic>Real time operation</topic><topic>self-attention</topic><topic>Shredding</topic><topic>Tobacco</topic><topic>Virtual reality</topic><toplevel>online_resources</toplevel><creatorcontrib>Yin, Yanlei</creatorcontrib><creatorcontrib>Wang, Lihua</creatorcontrib><creatorcontrib>Thai Hoang, Dinh</creatorcontrib><creatorcontrib>Wang, Wenbo</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Yanlei</au><au>Wang, Lihua</au><au>Thai Hoang, Dinh</au><au>Wang, Wenbo</au><au>Niyato, Dusit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Attention-Driven Quality Prediction for Production Process Optimization in Digital Twins</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>11</volume><issue>23</issue><spage>38569</spage><epage>38584</epage><pages>38569-38584</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In the process industry, long-term and efficient optimization of production lines requires real-time monitoring and analysis of operational states to fine-tune production line parameters. However, complexity in operational logic and intricate coupling of production process parameters make it difficult to develop an accurate mathematical model for the entire process, thus hindering the deployment of efficient optimization mechanisms. In view of these difficulties, we propose to deploy a digital twin (DT) of the production line by encoding its operational logic in a data-driven approach. By iteratively mapping the real-world data reflecting equipment operation status and product quality indicators in the DT, we adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks (NNs). This model enables the data-driven state evolution of the DT. The DT takes a role of aggregating the information of actual operating conditions and the results of quality-sensitive analysis, which facilitates the optimization of process production with virtual-reality evolution. Leveraging the DT as an information-flow carrier, we extract temporal features from key process indicators and establish a production process quality prediction model based on the proposed deep NN. Our operation experiments on a specific tobacco shredding line demonstrate that the proposed DT-based production process optimization method fosters seamless integration between virtual and real production lines. This integration achieves an average operating status prediction accuracy of over 98% and a product quality acceptance rate of over 96%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3448256</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7071-4565</orcidid><orcidid>https://orcid.org/0000-0003-1528-394X</orcidid><orcidid>https://orcid.org/0000-0002-7442-7416</orcidid><orcidid>https://orcid.org/0000-0002-9528-0863</orcidid><orcidid>https://orcid.org/0000-0002-7500-8723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-12, Vol.11 (23), p.38569-38584
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10643589
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Assembly lines
Deep learning
Depth indicators
digital twin (DT)
Digital twins
Indicators
Industries
Information flow
Manufacturing
Optimization
Prediction models
predictive optimization
Process control
Process parameters
process production line
Product quality
Production
Production lines
Quality assessment
Real time operation
self-attention
Shredding
Tobacco
Virtual reality
title Sparse Attention-Driven Quality Prediction for Production Process Optimization in Digital Twins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A42%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Attention-Driven%20Quality%20Prediction%20for%20Production%20Process%20Optimization%20in%20Digital%20Twins&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Yin,%20Yanlei&rft.date=2024-12-01&rft.volume=11&rft.issue=23&rft.spage=38569&rft.epage=38584&rft.pages=38569-38584&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3448256&rft_dat=%3Cproquest_RIE%3E3130932467%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130932467&rft_id=info:pmid/&rft_ieee_id=10643589&rfr_iscdi=true