Three-Way Approximations Fusion With Granular-Ball Computing to Guide Multigranularity Fuzzy Entropy for Feature Selection

In large-scale decision systems with high dimensions, constructing an efficient feature selection method via an uncertainty measure, has become a critical problem in fuzzy rough sets (FRS). However, the uncertainty method constructed through FRS for feature selection has the following limitations. 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2024-10, Vol.32 (10), p.5963-5977
Hauptverfasser: Xia, Deyou, Wang, Guoyin, Zhang, Qinghua, Yang, Jie, Xia, Shuyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5977
container_issue 10
container_start_page 5963
container_title IEEE transactions on fuzzy systems
container_volume 32
creator Xia, Deyou
Wang, Guoyin
Zhang, Qinghua
Yang, Jie
Xia, Shuyin
description In large-scale decision systems with high dimensions, constructing an efficient feature selection method via an uncertainty measure, has become a critical problem in fuzzy rough sets (FRS). However, the uncertainty method constructed through FRS for feature selection has the following limitations. 1) The composition of the uncertainty caused by fuzzy distance and similarity is neglected, which can not precisely evaluate the uncertainty. 2) The method of measuring uncertainty is to select all the sample for establishing a fuzzy similarity matrix, which leads to substantial time consumption. 3) The efficiency of selecting import features in a nonbatch manner is relatively low. Driven by this, both granular-ball (GB) computing and three-way approximations (TWA) are integrated to guide an uncertainty measure named multigranularity fuzzy entropy (MGFE), which is based on fuzzy distance and similarity, to improve the efficiency of feature selection. The MGFE is primarily recommended for measuring the uncertainty in multigranularity spaces. Therewith, the GB and TWA computing are integrated to compress the sample space to select representative sample. In addition, the MGFE is employed to assess the significance of the features in the representative sample space. Aided by the TWA, an efficient filter-wrapper feature selection with a three-way accelerator is successfully developed. Finally, related experiments illustrate the advancement of our proposed feature selection.s
doi_str_mv 10.1109/TFUZZ.2024.3436086
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10643363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643363</ieee_id><sourcerecordid>10_1109_TFUZZ_2024_3436086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-897be4a1b309e2635b432ae84fe4272cae909bd1e05632b710f0e2bb2e21707b3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9A8bD_oHi7Afb9oiEggnGgxASLs1umcKa0jbbbWL59Rbh4OmdwzzvZB5CnhmMGIP4dZWst9sRBy5HQgoFkbohAxZLFgAIedvPoESgQlD35KFpvgGYHLNoQE6rg0MMNrqjk7p21Y89am-rsqFJ2_RJN9Yf6Nzpsi20C950UdBpdaxbb8s99RWdt3aH9KMtvN1ft6zvevp06uis9K6qO5pXjiaofeuQfmGB2fnEI7nLddHg0zWHZJ3MVtNFsPycv08nyyBjMvZBFIcGpWZGQIxcibGRgmuMZI6ShzzTGENsdgxhrAQ3IYMckBvDkbMQQiOGhF96M1c1jcM8rV3_petSBunZXvpnLz3bS6_2eujlAllE_AcoKYQS4heMpG6i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-Way Approximations Fusion With Granular-Ball Computing to Guide Multigranularity Fuzzy Entropy for Feature Selection</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Xia, Deyou ; Wang, Guoyin ; Zhang, Qinghua ; Yang, Jie ; Xia, Shuyin</creator><creatorcontrib>Xia, Deyou ; Wang, Guoyin ; Zhang, Qinghua ; Yang, Jie ; Xia, Shuyin</creatorcontrib><description>In large-scale decision systems with high dimensions, constructing an efficient feature selection method via an uncertainty measure, has become a critical problem in fuzzy rough sets (FRS). However, the uncertainty method constructed through FRS for feature selection has the following limitations. 1) The composition of the uncertainty caused by fuzzy distance and similarity is neglected, which can not precisely evaluate the uncertainty. 2) The method of measuring uncertainty is to select all the sample for establishing a fuzzy similarity matrix, which leads to substantial time consumption. 3) The efficiency of selecting import features in a nonbatch manner is relatively low. Driven by this, both granular-ball (GB) computing and three-way approximations (TWA) are integrated to guide an uncertainty measure named multigranularity fuzzy entropy (MGFE), which is based on fuzzy distance and similarity, to improve the efficiency of feature selection. The MGFE is primarily recommended for measuring the uncertainty in multigranularity spaces. Therewith, the GB and TWA computing are integrated to compress the sample space to select representative sample. In addition, the MGFE is employed to assess the significance of the features in the representative sample space. Aided by the TWA, an efficient filter-wrapper feature selection with a three-way accelerator is successfully developed. Finally, related experiments illustrate the advancement of our proposed feature selection.s</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2024.3436086</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>IEEE</publisher><subject>Costs ; Entropy ; Feature extraction ; Feature selection ; fuzzy rough sets ; Fuzzy sets ; granular ball computing ; Measurement uncertainty ; Rough sets ; three-way approximations ; Uncertainty ; uncertainty measure</subject><ispartof>IEEE transactions on fuzzy systems, 2024-10, Vol.32 (10), p.5963-5977</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c149t-897be4a1b309e2635b432ae84fe4272cae909bd1e05632b710f0e2bb2e21707b3</cites><orcidid>0000-0002-6154-4656 ; 0000-0002-8542-0439 ; 0000-0001-5993-9563 ; 0000-0002-8521-5232 ; 0000-0002-6580-9287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643363$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643363$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xia, Deyou</creatorcontrib><creatorcontrib>Wang, Guoyin</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Xia, Shuyin</creatorcontrib><title>Three-Way Approximations Fusion With Granular-Ball Computing to Guide Multigranularity Fuzzy Entropy for Feature Selection</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>In large-scale decision systems with high dimensions, constructing an efficient feature selection method via an uncertainty measure, has become a critical problem in fuzzy rough sets (FRS). However, the uncertainty method constructed through FRS for feature selection has the following limitations. 1) The composition of the uncertainty caused by fuzzy distance and similarity is neglected, which can not precisely evaluate the uncertainty. 2) The method of measuring uncertainty is to select all the sample for establishing a fuzzy similarity matrix, which leads to substantial time consumption. 3) The efficiency of selecting import features in a nonbatch manner is relatively low. Driven by this, both granular-ball (GB) computing and three-way approximations (TWA) are integrated to guide an uncertainty measure named multigranularity fuzzy entropy (MGFE), which is based on fuzzy distance and similarity, to improve the efficiency of feature selection. The MGFE is primarily recommended for measuring the uncertainty in multigranularity spaces. Therewith, the GB and TWA computing are integrated to compress the sample space to select representative sample. In addition, the MGFE is employed to assess the significance of the features in the representative sample space. Aided by the TWA, an efficient filter-wrapper feature selection with a three-way accelerator is successfully developed. Finally, related experiments illustrate the advancement of our proposed feature selection.s</description><subject>Costs</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>fuzzy rough sets</subject><subject>Fuzzy sets</subject><subject>granular ball computing</subject><subject>Measurement uncertainty</subject><subject>Rough sets</subject><subject>three-way approximations</subject><subject>Uncertainty</subject><subject>uncertainty measure</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExH9A8bD_oHi7Afb9oiEggnGgxASLs1umcKa0jbbbWL59Rbh4OmdwzzvZB5CnhmMGIP4dZWst9sRBy5HQgoFkbohAxZLFgAIedvPoESgQlD35KFpvgGYHLNoQE6rg0MMNrqjk7p21Y89am-rsqFJ2_RJN9Yf6Nzpsi20C950UdBpdaxbb8s99RWdt3aH9KMtvN1ft6zvevp06uis9K6qO5pXjiaofeuQfmGB2fnEI7nLddHg0zWHZJ3MVtNFsPycv08nyyBjMvZBFIcGpWZGQIxcibGRgmuMZI6ShzzTGENsdgxhrAQ3IYMckBvDkbMQQiOGhF96M1c1jcM8rV3_petSBunZXvpnLz3bS6_2eujlAllE_AcoKYQS4heMpG6i</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Xia, Deyou</creator><creator>Wang, Guoyin</creator><creator>Zhang, Qinghua</creator><creator>Yang, Jie</creator><creator>Xia, Shuyin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6154-4656</orcidid><orcidid>https://orcid.org/0000-0002-8542-0439</orcidid><orcidid>https://orcid.org/0000-0001-5993-9563</orcidid><orcidid>https://orcid.org/0000-0002-8521-5232</orcidid><orcidid>https://orcid.org/0000-0002-6580-9287</orcidid></search><sort><creationdate>202410</creationdate><title>Three-Way Approximations Fusion With Granular-Ball Computing to Guide Multigranularity Fuzzy Entropy for Feature Selection</title><author>Xia, Deyou ; Wang, Guoyin ; Zhang, Qinghua ; Yang, Jie ; Xia, Shuyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-897be4a1b309e2635b432ae84fe4272cae909bd1e05632b710f0e2bb2e21707b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Costs</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>fuzzy rough sets</topic><topic>Fuzzy sets</topic><topic>granular ball computing</topic><topic>Measurement uncertainty</topic><topic>Rough sets</topic><topic>three-way approximations</topic><topic>Uncertainty</topic><topic>uncertainty measure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Deyou</creatorcontrib><creatorcontrib>Wang, Guoyin</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><creatorcontrib>Xia, Shuyin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xia, Deyou</au><au>Wang, Guoyin</au><au>Zhang, Qinghua</au><au>Yang, Jie</au><au>Xia, Shuyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Way Approximations Fusion With Granular-Ball Computing to Guide Multigranularity Fuzzy Entropy for Feature Selection</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2024-10</date><risdate>2024</risdate><volume>32</volume><issue>10</issue><spage>5963</spage><epage>5977</epage><pages>5963-5977</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>In large-scale decision systems with high dimensions, constructing an efficient feature selection method via an uncertainty measure, has become a critical problem in fuzzy rough sets (FRS). However, the uncertainty method constructed through FRS for feature selection has the following limitations. 1) The composition of the uncertainty caused by fuzzy distance and similarity is neglected, which can not precisely evaluate the uncertainty. 2) The method of measuring uncertainty is to select all the sample for establishing a fuzzy similarity matrix, which leads to substantial time consumption. 3) The efficiency of selecting import features in a nonbatch manner is relatively low. Driven by this, both granular-ball (GB) computing and three-way approximations (TWA) are integrated to guide an uncertainty measure named multigranularity fuzzy entropy (MGFE), which is based on fuzzy distance and similarity, to improve the efficiency of feature selection. The MGFE is primarily recommended for measuring the uncertainty in multigranularity spaces. Therewith, the GB and TWA computing are integrated to compress the sample space to select representative sample. In addition, the MGFE is employed to assess the significance of the features in the representative sample space. Aided by the TWA, an efficient filter-wrapper feature selection with a three-way accelerator is successfully developed. Finally, related experiments illustrate the advancement of our proposed feature selection.s</abstract><pub>IEEE</pub><doi>10.1109/TFUZZ.2024.3436086</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6154-4656</orcidid><orcidid>https://orcid.org/0000-0002-8542-0439</orcidid><orcidid>https://orcid.org/0000-0001-5993-9563</orcidid><orcidid>https://orcid.org/0000-0002-8521-5232</orcidid><orcidid>https://orcid.org/0000-0002-6580-9287</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2024-10, Vol.32 (10), p.5963-5977
issn 1063-6706
1941-0034
language eng
recordid cdi_ieee_primary_10643363
source IEEE/IET Electronic Library (IEL)
subjects Costs
Entropy
Feature extraction
Feature selection
fuzzy rough sets
Fuzzy sets
granular ball computing
Measurement uncertainty
Rough sets
three-way approximations
Uncertainty
uncertainty measure
title Three-Way Approximations Fusion With Granular-Ball Computing to Guide Multigranularity Fuzzy Entropy for Feature Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Way%20Approximations%20Fusion%20With%20Granular-Ball%20Computing%20to%20Guide%20Multigranularity%20Fuzzy%20Entropy%20for%20Feature%20Selection&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Xia,%20Deyou&rft.date=2024-10&rft.volume=32&rft.issue=10&rft.spage=5963&rft.epage=5977&rft.pages=5963-5977&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2024.3436086&rft_dat=%3Ccrossref_RIE%3E10_1109_TFUZZ_2024_3436086%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10643363&rfr_iscdi=true