Fault Detection and Exclusion for Robust Online Calibration of Vehicle to LiDAR Rotation Parameter

LiDAR (Light Detection and Ranging) is a technology that is widely used in Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) applications for tasks such as perception, localization, and Simultaneous Localization And Mapping (SLAM). For LiDAR to function appropriately, it is neces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2024-08, p.1-10
Hauptverfasser: Seok, Jiwon, Kim, Chansoo, Resende, Paulo, Bradai, Benazouz, Jo, Kichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on intelligent vehicles
container_volume
creator Seok, Jiwon
Kim, Chansoo
Resende, Paulo
Bradai, Benazouz
Jo, Kichun
description LiDAR (Light Detection and Ranging) is a technology that is widely used in Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) applications for tasks such as perception, localization, and Simultaneous Localization And Mapping (SLAM). For LiDAR to function appropriately, it is necessary to calibrate the rotation extrinsic parameters that define the orientation relationship between the LiDAR and vehicle coordinates. These parameters include roll, pitch, and yaw, initially calibrated during manufacturing. However, they may change over time due to vibration, heat, loading, or accidental impact during long-term vehicle operation. Using parameters that do not reflect these changes can drastically degrade the performance of ADAS and AD applications. This paper proposes a precise online calibration process to detect and correct LiDAR rotation parameter changes. The precise online calibration system utilizes standard on-road driving data to estimate the LiDAR-vehicle rotation extrinsic parameters online. The proposed process consists of two parts: roll-pitch parameter estimation and yaw parameter estimation. The system estimates the roll-pitch relative to the ground plane in the roll-pitch estimation. In estimating the yaw parameter, a simplified hand-eye calibration approach is used, which leverages vehicle and LiDAR odometry to estimate the yaw of the LiDAR calibration parameter. To improve the accuracy and stability in the yaw estimation, a fault data exclusion algorithm is introduced to identify and exclude faulty inputs based on the difference between the vehicle and LiDAR odometry. The proposed system's effectiveness, robustness, and accuracy are verified in various environments, including urban roads and highway scenarios.
doi_str_mv 10.1109/TIV.2024.3446794
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10643317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643317</ieee_id><sourcerecordid>10643317</sourcerecordid><originalsourceid>FETCH-ieee_primary_106433173</originalsourceid><addsrcrecordid>eNqFjL0KwjAYRTMoKOru4PC9gDVpYpuO4g8KgiLiKmn9ipHYSJKCvr2_u9PlcA6XkD6jEWM0G-1XhyimsYi4EEmaiQZpxzzNhlKOZYv0vL9QSlkiY0mzNskXqjYBZhiwCNpWoKoTzO-Fqf2bSutgZ_PaB9hURlcIU2V07tSntSUc8KwLgxAsrPVssnvV4Su3yqnr69Z1SbNUxmPvtx0yWMz30-VQI-Lx5vRVuceR0URwzlL-Rz8B0zdEnQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fault Detection and Exclusion for Robust Online Calibration of Vehicle to LiDAR Rotation Parameter</title><source>IEEE Electronic Library (IEL)</source><creator>Seok, Jiwon ; Kim, Chansoo ; Resende, Paulo ; Bradai, Benazouz ; Jo, Kichun</creator><creatorcontrib>Seok, Jiwon ; Kim, Chansoo ; Resende, Paulo ; Bradai, Benazouz ; Jo, Kichun</creatorcontrib><description>LiDAR (Light Detection and Ranging) is a technology that is widely used in Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) applications for tasks such as perception, localization, and Simultaneous Localization And Mapping (SLAM). For LiDAR to function appropriately, it is necessary to calibrate the rotation extrinsic parameters that define the orientation relationship between the LiDAR and vehicle coordinates. These parameters include roll, pitch, and yaw, initially calibrated during manufacturing. However, they may change over time due to vibration, heat, loading, or accidental impact during long-term vehicle operation. Using parameters that do not reflect these changes can drastically degrade the performance of ADAS and AD applications. This paper proposes a precise online calibration process to detect and correct LiDAR rotation parameter changes. The precise online calibration system utilizes standard on-road driving data to estimate the LiDAR-vehicle rotation extrinsic parameters online. The proposed process consists of two parts: roll-pitch parameter estimation and yaw parameter estimation. The system estimates the roll-pitch relative to the ground plane in the roll-pitch estimation. In estimating the yaw parameter, a simplified hand-eye calibration approach is used, which leverages vehicle and LiDAR odometry to estimate the yaw of the LiDAR calibration parameter. To improve the accuracy and stability in the yaw estimation, a fault data exclusion algorithm is introduced to identify and exclude faulty inputs based on the difference between the vehicle and LiDAR odometry. The proposed system's effectiveness, robustness, and accuracy are verified in various environments, including urban roads and highway scenarios.</description><identifier>ISSN: 2379-8858</identifier><identifier>DOI: 10.1109/TIV.2024.3446794</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>IEEE</publisher><subject>autonomous ; Calibration ; Estimation ; fault detection ; Laser radar ; LiDAR ; LiDAR odometry ; Odometry ; on-road driving ; online calibration ; Point cloud compression ; Simultaneous localization and mapping ; Three-dimensional displays</subject><ispartof>IEEE transactions on intelligent vehicles, 2024-08, p.1-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5044-5337 ; 0000-0002-5124-6540 ; 0000-0002-5170-7837 ; 0000-0003-0543-2198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seok, Jiwon</creatorcontrib><creatorcontrib>Kim, Chansoo</creatorcontrib><creatorcontrib>Resende, Paulo</creatorcontrib><creatorcontrib>Bradai, Benazouz</creatorcontrib><creatorcontrib>Jo, Kichun</creatorcontrib><title>Fault Detection and Exclusion for Robust Online Calibration of Vehicle to LiDAR Rotation Parameter</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>LiDAR (Light Detection and Ranging) is a technology that is widely used in Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) applications for tasks such as perception, localization, and Simultaneous Localization And Mapping (SLAM). For LiDAR to function appropriately, it is necessary to calibrate the rotation extrinsic parameters that define the orientation relationship between the LiDAR and vehicle coordinates. These parameters include roll, pitch, and yaw, initially calibrated during manufacturing. However, they may change over time due to vibration, heat, loading, or accidental impact during long-term vehicle operation. Using parameters that do not reflect these changes can drastically degrade the performance of ADAS and AD applications. This paper proposes a precise online calibration process to detect and correct LiDAR rotation parameter changes. The precise online calibration system utilizes standard on-road driving data to estimate the LiDAR-vehicle rotation extrinsic parameters online. The proposed process consists of two parts: roll-pitch parameter estimation and yaw parameter estimation. The system estimates the roll-pitch relative to the ground plane in the roll-pitch estimation. In estimating the yaw parameter, a simplified hand-eye calibration approach is used, which leverages vehicle and LiDAR odometry to estimate the yaw of the LiDAR calibration parameter. To improve the accuracy and stability in the yaw estimation, a fault data exclusion algorithm is introduced to identify and exclude faulty inputs based on the difference between the vehicle and LiDAR odometry. The proposed system's effectiveness, robustness, and accuracy are verified in various environments, including urban roads and highway scenarios.</description><subject>autonomous</subject><subject>Calibration</subject><subject>Estimation</subject><subject>fault detection</subject><subject>Laser radar</subject><subject>LiDAR</subject><subject>LiDAR odometry</subject><subject>Odometry</subject><subject>on-road driving</subject><subject>online calibration</subject><subject>Point cloud compression</subject><subject>Simultaneous localization and mapping</subject><subject>Three-dimensional displays</subject><issn>2379-8858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjL0KwjAYRTMoKOru4PC9gDVpYpuO4g8KgiLiKmn9ipHYSJKCvr2_u9PlcA6XkD6jEWM0G-1XhyimsYi4EEmaiQZpxzzNhlKOZYv0vL9QSlkiY0mzNskXqjYBZhiwCNpWoKoTzO-Fqf2bSutgZ_PaB9hURlcIU2V07tSntSUc8KwLgxAsrPVssnvV4Su3yqnr69Z1SbNUxmPvtx0yWMz30-VQI-Lx5vRVuceR0URwzlL-Rz8B0zdEnQ</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Seok, Jiwon</creator><creator>Kim, Chansoo</creator><creator>Resende, Paulo</creator><creator>Bradai, Benazouz</creator><creator>Jo, Kichun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-5044-5337</orcidid><orcidid>https://orcid.org/0000-0002-5124-6540</orcidid><orcidid>https://orcid.org/0000-0002-5170-7837</orcidid><orcidid>https://orcid.org/0000-0003-0543-2198</orcidid></search><sort><creationdate>20240820</creationdate><title>Fault Detection and Exclusion for Robust Online Calibration of Vehicle to LiDAR Rotation Parameter</title><author>Seok, Jiwon ; Kim, Chansoo ; Resende, Paulo ; Bradai, Benazouz ; Jo, Kichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106433173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>autonomous</topic><topic>Calibration</topic><topic>Estimation</topic><topic>fault detection</topic><topic>Laser radar</topic><topic>LiDAR</topic><topic>LiDAR odometry</topic><topic>Odometry</topic><topic>on-road driving</topic><topic>online calibration</topic><topic>Point cloud compression</topic><topic>Simultaneous localization and mapping</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seok, Jiwon</creatorcontrib><creatorcontrib>Kim, Chansoo</creatorcontrib><creatorcontrib>Resende, Paulo</creatorcontrib><creatorcontrib>Bradai, Benazouz</creatorcontrib><creatorcontrib>Jo, Kichun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seok, Jiwon</au><au>Kim, Chansoo</au><au>Resende, Paulo</au><au>Bradai, Benazouz</au><au>Jo, Kichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Detection and Exclusion for Robust Online Calibration of Vehicle to LiDAR Rotation Parameter</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2024-08-20</date><risdate>2024</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2379-8858</issn><coden>ITIVBL</coden><abstract>LiDAR (Light Detection and Ranging) is a technology that is widely used in Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) applications for tasks such as perception, localization, and Simultaneous Localization And Mapping (SLAM). For LiDAR to function appropriately, it is necessary to calibrate the rotation extrinsic parameters that define the orientation relationship between the LiDAR and vehicle coordinates. These parameters include roll, pitch, and yaw, initially calibrated during manufacturing. However, they may change over time due to vibration, heat, loading, or accidental impact during long-term vehicle operation. Using parameters that do not reflect these changes can drastically degrade the performance of ADAS and AD applications. This paper proposes a precise online calibration process to detect and correct LiDAR rotation parameter changes. The precise online calibration system utilizes standard on-road driving data to estimate the LiDAR-vehicle rotation extrinsic parameters online. The proposed process consists of two parts: roll-pitch parameter estimation and yaw parameter estimation. The system estimates the roll-pitch relative to the ground plane in the roll-pitch estimation. In estimating the yaw parameter, a simplified hand-eye calibration approach is used, which leverages vehicle and LiDAR odometry to estimate the yaw of the LiDAR calibration parameter. To improve the accuracy and stability in the yaw estimation, a fault data exclusion algorithm is introduced to identify and exclude faulty inputs based on the difference between the vehicle and LiDAR odometry. The proposed system's effectiveness, robustness, and accuracy are verified in various environments, including urban roads and highway scenarios.</abstract><pub>IEEE</pub><doi>10.1109/TIV.2024.3446794</doi><orcidid>https://orcid.org/0000-0002-5044-5337</orcidid><orcidid>https://orcid.org/0000-0002-5124-6540</orcidid><orcidid>https://orcid.org/0000-0002-5170-7837</orcidid><orcidid>https://orcid.org/0000-0003-0543-2198</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2024-08, p.1-10
issn 2379-8858
language eng
recordid cdi_ieee_primary_10643317
source IEEE Electronic Library (IEL)
subjects autonomous
Calibration
Estimation
fault detection
Laser radar
LiDAR
LiDAR odometry
Odometry
on-road driving
online calibration
Point cloud compression
Simultaneous localization and mapping
Three-dimensional displays
title Fault Detection and Exclusion for Robust Online Calibration of Vehicle to LiDAR Rotation Parameter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Detection%20and%20Exclusion%20for%20Robust%20Online%20Calibration%20of%20Vehicle%20to%20LiDAR%20Rotation%20Parameter&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Seok,%20Jiwon&rft.date=2024-08-20&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2379-8858&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2024.3446794&rft_dat=%3Cieee_RIE%3E10643317%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10643317&rfr_iscdi=true