Physics-Aware Watermarking Embedded in Unknown Input Observers for False Data Injection Attack Detection in Cyber-Physical Microgrids

The physics-aware watermarking-based detection method has shown great potential in detecting stealthy False Data Injection Attacks (FDIAs) by adding appropriate watermarks to control commands or sensor measurements, especially in industrial control systems and grid-tied Distributed Energy Resources...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2024, Vol.19, p.7824-7840
Hauptverfasser: Liu, Mengxiang, Zhang, Xin, Zhu, Hengye, Zhang, Zhenyong, Deng, Ruilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7840
container_issue
container_start_page 7824
container_title IEEE transactions on information forensics and security
container_volume 19
creator Liu, Mengxiang
Zhang, Xin
Zhu, Hengye
Zhang, Zhenyong
Deng, Ruilong
description The physics-aware watermarking-based detection method has shown great potential in detecting stealthy False Data Injection Attacks (FDIAs) by adding appropriate watermarks to control commands or sensor measurements, especially in industrial control systems and grid-tied Distributed Energy Resources (DERs). However, existing watermarking-based detection methods have limitations in either handling the intricate physical couplings among DERs or characterising the fast changing power electronics dynamics, and thus cannot be directly applied to microgrids. Inspired by the methodology of Unknown Input Observer (UIO), which can be employed for the distributed anomaly monitoring in cyber-physical microgrids but would be easily bypassed once the adversary has the knowledge of certain electrical parameters, this paper makes the first attempt to investigate the physics-aware watermarking embedded in UIOs such that the stealthy FDIAs would be intentionally disrupted by the watermarking scheme. Based on the theoretical analysis of the detection enhancement and performance degradation under watermarking-enhanced UIOs, the watermark strengths, UIO parameters, and control gains are optimally co-designed to significantly enhance the detection effectiveness while not degrading the control performance. The robustness of the watermarking-enhanced UIO to Time Synchronisation Errors (TSEs) is improved by employing a sliding time window with appropriate length. The performance of the proposed method is validated through Matlab/Simulink studies and cyber-physical co-simulation experiments, and the sensitivities of the detection latency and TSE robustness to watermark strength and detection window's length are comprehensively studied.
doi_str_mv 10.1109/TIFS.2024.3447235
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10643207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643207</ieee_id><sourcerecordid>10_1109_TIFS_2024_3447235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-1e7f6bb15bd88e2315ed553ed668ba499c3cc0037443af4d069ca2400431c3653</originalsourceid><addsrcrecordid>eNpNkNtKAzEURYMoWKsfIPiQH5iaTC4z81haq4VKBVt8HDLJmZpeMiWJln6A_-0MLeLTOZzL3uyF0D0lA0pJ8biYTt4HKUn5gHGepUxcoB4VQiaSpPTyr6fsGt2EsCaEcyrzHvp5-zwGq0MyPCgP-ENF8DvlN9at8NOuAmPAYOvw0m1cc3B46vZfEc-rAP4bfMB14_FEbQPgsYqqXa9BR9s4PIxR6Q0eQzwPWpHRsQKfnBzVFr9a7ZuVtybcoqu6E7k71z5aTp4Wo5dkNn-ejoazRFOex4RCVsuqoqIyeQ4powKMEAyMlHmleFFopjUhLOOcqZobIgutUt6GZVQzKVgf0ZNuaxyCh7rce9vGPZaUlB3HsuNYdhzLM8f25-H0YwHg373kLCUZ-wU1BnDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physics-Aware Watermarking Embedded in Unknown Input Observers for False Data Injection Attack Detection in Cyber-Physical Microgrids</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Mengxiang ; Zhang, Xin ; Zhu, Hengye ; Zhang, Zhenyong ; Deng, Ruilong</creator><creatorcontrib>Liu, Mengxiang ; Zhang, Xin ; Zhu, Hengye ; Zhang, Zhenyong ; Deng, Ruilong</creatorcontrib><description>The physics-aware watermarking-based detection method has shown great potential in detecting stealthy False Data Injection Attacks (FDIAs) by adding appropriate watermarks to control commands or sensor measurements, especially in industrial control systems and grid-tied Distributed Energy Resources (DERs). However, existing watermarking-based detection methods have limitations in either handling the intricate physical couplings among DERs or characterising the fast changing power electronics dynamics, and thus cannot be directly applied to microgrids. Inspired by the methodology of Unknown Input Observer (UIO), which can be employed for the distributed anomaly monitoring in cyber-physical microgrids but would be easily bypassed once the adversary has the knowledge of certain electrical parameters, this paper makes the first attempt to investigate the physics-aware watermarking embedded in UIOs such that the stealthy FDIAs would be intentionally disrupted by the watermarking scheme. Based on the theoretical analysis of the detection enhancement and performance degradation under watermarking-enhanced UIOs, the watermark strengths, UIO parameters, and control gains are optimally co-designed to significantly enhance the detection effectiveness while not degrading the control performance. The robustness of the watermarking-enhanced UIO to Time Synchronisation Errors (TSEs) is improved by employing a sliding time window with appropriate length. The performance of the proposed method is validated through Matlab/Simulink studies and cyber-physical co-simulation experiments, and the sensitivities of the detection latency and TSE robustness to watermark strength and detection window's length are comprehensively studied.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2024.3447235</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>cyber-physical co-simulation ; Degradation ; False data injection attack ; microgrid ; Microgrids ; Monitoring ; Perturbation methods ; physics-aware watermarking ; proactive detection ; Real-time systems ; Robustness ; unknown input observer ; Watermarking</subject><ispartof>IEEE transactions on information forensics and security, 2024, Vol.19, p.7824-7840</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-1e7f6bb15bd88e2315ed553ed668ba499c3cc0037443af4d069ca2400431c3653</cites><orcidid>0009-0004-3487-7182 ; 0000-0002-6063-959X ; 0000-0003-0950-1525 ; 0000-0002-8158-150X ; 0000-0002-2663-4787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Mengxiang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Zhu, Hengye</creatorcontrib><creatorcontrib>Zhang, Zhenyong</creatorcontrib><creatorcontrib>Deng, Ruilong</creatorcontrib><title>Physics-Aware Watermarking Embedded in Unknown Input Observers for False Data Injection Attack Detection in Cyber-Physical Microgrids</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>The physics-aware watermarking-based detection method has shown great potential in detecting stealthy False Data Injection Attacks (FDIAs) by adding appropriate watermarks to control commands or sensor measurements, especially in industrial control systems and grid-tied Distributed Energy Resources (DERs). However, existing watermarking-based detection methods have limitations in either handling the intricate physical couplings among DERs or characterising the fast changing power electronics dynamics, and thus cannot be directly applied to microgrids. Inspired by the methodology of Unknown Input Observer (UIO), which can be employed for the distributed anomaly monitoring in cyber-physical microgrids but would be easily bypassed once the adversary has the knowledge of certain electrical parameters, this paper makes the first attempt to investigate the physics-aware watermarking embedded in UIOs such that the stealthy FDIAs would be intentionally disrupted by the watermarking scheme. Based on the theoretical analysis of the detection enhancement and performance degradation under watermarking-enhanced UIOs, the watermark strengths, UIO parameters, and control gains are optimally co-designed to significantly enhance the detection effectiveness while not degrading the control performance. The robustness of the watermarking-enhanced UIO to Time Synchronisation Errors (TSEs) is improved by employing a sliding time window with appropriate length. The performance of the proposed method is validated through Matlab/Simulink studies and cyber-physical co-simulation experiments, and the sensitivities of the detection latency and TSE robustness to watermark strength and detection window's length are comprehensively studied.</description><subject>cyber-physical co-simulation</subject><subject>Degradation</subject><subject>False data injection attack</subject><subject>microgrid</subject><subject>Microgrids</subject><subject>Monitoring</subject><subject>Perturbation methods</subject><subject>physics-aware watermarking</subject><subject>proactive detection</subject><subject>Real-time systems</subject><subject>Robustness</subject><subject>unknown input observer</subject><subject>Watermarking</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNtKAzEURYMoWKsfIPiQH5iaTC4z81haq4VKBVt8HDLJmZpeMiWJln6A_-0MLeLTOZzL3uyF0D0lA0pJ8biYTt4HKUn5gHGepUxcoB4VQiaSpPTyr6fsGt2EsCaEcyrzHvp5-zwGq0MyPCgP-ENF8DvlN9at8NOuAmPAYOvw0m1cc3B46vZfEc-rAP4bfMB14_FEbQPgsYqqXa9BR9s4PIxR6Q0eQzwPWpHRsQKfnBzVFr9a7ZuVtybcoqu6E7k71z5aTp4Wo5dkNn-ejoazRFOex4RCVsuqoqIyeQ4powKMEAyMlHmleFFopjUhLOOcqZobIgutUt6GZVQzKVgf0ZNuaxyCh7rce9vGPZaUlB3HsuNYdhzLM8f25-H0YwHg373kLCUZ-wU1BnDE</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Mengxiang</creator><creator>Zhang, Xin</creator><creator>Zhu, Hengye</creator><creator>Zhang, Zhenyong</creator><creator>Deng, Ruilong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0004-3487-7182</orcidid><orcidid>https://orcid.org/0000-0002-6063-959X</orcidid><orcidid>https://orcid.org/0000-0003-0950-1525</orcidid><orcidid>https://orcid.org/0000-0002-8158-150X</orcidid><orcidid>https://orcid.org/0000-0002-2663-4787</orcidid></search><sort><creationdate>2024</creationdate><title>Physics-Aware Watermarking Embedded in Unknown Input Observers for False Data Injection Attack Detection in Cyber-Physical Microgrids</title><author>Liu, Mengxiang ; Zhang, Xin ; Zhu, Hengye ; Zhang, Zhenyong ; Deng, Ruilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-1e7f6bb15bd88e2315ed553ed668ba499c3cc0037443af4d069ca2400431c3653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>cyber-physical co-simulation</topic><topic>Degradation</topic><topic>False data injection attack</topic><topic>microgrid</topic><topic>Microgrids</topic><topic>Monitoring</topic><topic>Perturbation methods</topic><topic>physics-aware watermarking</topic><topic>proactive detection</topic><topic>Real-time systems</topic><topic>Robustness</topic><topic>unknown input observer</topic><topic>Watermarking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mengxiang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Zhu, Hengye</creatorcontrib><creatorcontrib>Zhang, Zhenyong</creatorcontrib><creatorcontrib>Deng, Ruilong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Mengxiang</au><au>Zhang, Xin</au><au>Zhu, Hengye</au><au>Zhang, Zhenyong</au><au>Deng, Ruilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Aware Watermarking Embedded in Unknown Input Observers for False Data Injection Attack Detection in Cyber-Physical Microgrids</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2024</date><risdate>2024</risdate><volume>19</volume><spage>7824</spage><epage>7840</epage><pages>7824-7840</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>The physics-aware watermarking-based detection method has shown great potential in detecting stealthy False Data Injection Attacks (FDIAs) by adding appropriate watermarks to control commands or sensor measurements, especially in industrial control systems and grid-tied Distributed Energy Resources (DERs). However, existing watermarking-based detection methods have limitations in either handling the intricate physical couplings among DERs or characterising the fast changing power electronics dynamics, and thus cannot be directly applied to microgrids. Inspired by the methodology of Unknown Input Observer (UIO), which can be employed for the distributed anomaly monitoring in cyber-physical microgrids but would be easily bypassed once the adversary has the knowledge of certain electrical parameters, this paper makes the first attempt to investigate the physics-aware watermarking embedded in UIOs such that the stealthy FDIAs would be intentionally disrupted by the watermarking scheme. Based on the theoretical analysis of the detection enhancement and performance degradation under watermarking-enhanced UIOs, the watermark strengths, UIO parameters, and control gains are optimally co-designed to significantly enhance the detection effectiveness while not degrading the control performance. The robustness of the watermarking-enhanced UIO to Time Synchronisation Errors (TSEs) is improved by employing a sliding time window with appropriate length. The performance of the proposed method is validated through Matlab/Simulink studies and cyber-physical co-simulation experiments, and the sensitivities of the detection latency and TSE robustness to watermark strength and detection window's length are comprehensively studied.</abstract><pub>IEEE</pub><doi>10.1109/TIFS.2024.3447235</doi><tpages>17</tpages><orcidid>https://orcid.org/0009-0004-3487-7182</orcidid><orcidid>https://orcid.org/0000-0002-6063-959X</orcidid><orcidid>https://orcid.org/0000-0003-0950-1525</orcidid><orcidid>https://orcid.org/0000-0002-8158-150X</orcidid><orcidid>https://orcid.org/0000-0002-2663-4787</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2024, Vol.19, p.7824-7840
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_10643207
source IEEE Electronic Library (IEL)
subjects cyber-physical co-simulation
Degradation
False data injection attack
microgrid
Microgrids
Monitoring
Perturbation methods
physics-aware watermarking
proactive detection
Real-time systems
Robustness
unknown input observer
Watermarking
title Physics-Aware Watermarking Embedded in Unknown Input Observers for False Data Injection Attack Detection in Cyber-Physical Microgrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Aware%20Watermarking%20Embedded%20in%20Unknown%20Input%20Observers%20for%20False%20Data%20Injection%20Attack%20Detection%20in%20Cyber-Physical%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Liu,%20Mengxiang&rft.date=2024&rft.volume=19&rft.spage=7824&rft.epage=7840&rft.pages=7824-7840&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2024.3447235&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2024_3447235%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10643207&rfr_iscdi=true