Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System
Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learn...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2024-11, Vol.60 (6), p.8273-8283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8283 |
---|---|
container_issue | 6 |
container_start_page | 8273 |
container_title | IEEE transactions on industry applications |
container_volume | 60 |
creator | Yoon, Yeunggurl Yoon, Myungseok Zhang, Xuehan Choi, Sungyun |
description | Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learning (DRL) is effectively trained offline for real-time operations that overcome the time-consumption problem in practical implementation. This paper proposes a safe deep reinforcement learning (SDRL) based distribution system operation method to mitigate unbalanced voltage for real-time operation and satisfy operational constraints. The proposed SDRL method incorporates a learning module (LM) and a constraint module (CM), controlling the energy storage system (ESS) to improve voltage balancing. The proposed SDRL method is compared with the hybrid optimization (HO) and typical DRL models regarding time consumption and voltage unbalance mitigation. For this purpose, the models operate in modified IEEE-13 node and IEEE-123 node test feeders. |
doi_str_mv | 10.1109/TIA.2024.3446735 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10640304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10640304</ieee_id><sourcerecordid>10_1109_TIA_2024_3446735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-d35ce043140826aad55304c907f07094d7123cee4e39f94d0dcfbda71e160d8d3</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpodb23kMP-QOxk012Y45W-yEIQtXzEpOJpLhRku3Bf9-IHnqaGeZ5Z-Ah5JnDiHPQr-v5ZFRBJUdCykaJ-oYMuBaaadGoWzIA0IJpreU9ecj5B4DLmssBwZXxSGeIR_qNIfpDsthh7OkCTYoh7tibyejK0uzZOnRIl0dMpg-HSFd9aXB3oiHSTdyavYm2oLOQ-xS2vxfmlHvsHsmdN_uMT9c6JJuP9_X0iy2Wn_PpZMEsl6pnTtQWQQouYVw1xri6FiCtBuVBgZZO8UpYRIlC-zKCs37rjOLIG3BjJ4YELndtOuSc0LfHFDqTTi2H9qypLZras6b2qqlEXi6RgIj_8EZC-S3-AMp_ZNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System</title><source>IEEE Electronic Library (IEL)</source><creator>Yoon, Yeunggurl ; Yoon, Myungseok ; Zhang, Xuehan ; Choi, Sungyun</creator><creatorcontrib>Yoon, Yeunggurl ; Yoon, Myungseok ; Zhang, Xuehan ; Choi, Sungyun</creatorcontrib><description>Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learning (DRL) is effectively trained offline for real-time operations that overcome the time-consumption problem in practical implementation. This paper proposes a safe deep reinforcement learning (SDRL) based distribution system operation method to mitigate unbalanced voltage for real-time operation and satisfy operational constraints. The proposed SDRL method incorporates a learning module (LM) and a constraint module (CM), controlling the energy storage system (ESS) to improve voltage balancing. The proposed SDRL method is compared with the hybrid optimization (HO) and typical DRL models regarding time consumption and voltage unbalance mitigation. For this purpose, the models operate in modified IEEE-13 node and IEEE-123 node test feeders.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2024.3446735</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep reinforcement learning ; hybrid optimization ; Mathematical models ; Optimization ; quadratic programming ; Reactive power ; Real-time systems ; safe deep reinforcement learning ; Systems operation ; Uncertainty ; Voltage control ; voltage unbalance factor</subject><ispartof>IEEE transactions on industry applications, 2024-11, Vol.60 (6), p.8273-8283</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-d35ce043140826aad55304c907f07094d7123cee4e39f94d0dcfbda71e160d8d3</cites><orcidid>0000-0001-8802-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10640304$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10640304$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoon, Yeunggurl</creatorcontrib><creatorcontrib>Yoon, Myungseok</creatorcontrib><creatorcontrib>Zhang, Xuehan</creatorcontrib><creatorcontrib>Choi, Sungyun</creatorcontrib><title>Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learning (DRL) is effectively trained offline for real-time operations that overcome the time-consumption problem in practical implementation. This paper proposes a safe deep reinforcement learning (SDRL) based distribution system operation method to mitigate unbalanced voltage for real-time operation and satisfy operational constraints. The proposed SDRL method incorporates a learning module (LM) and a constraint module (CM), controlling the energy storage system (ESS) to improve voltage balancing. The proposed SDRL method is compared with the hybrid optimization (HO) and typical DRL models regarding time consumption and voltage unbalance mitigation. For this purpose, the models operate in modified IEEE-13 node and IEEE-123 node test feeders.</description><subject>Deep reinforcement learning</subject><subject>hybrid optimization</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>quadratic programming</subject><subject>Reactive power</subject><subject>Real-time systems</subject><subject>safe deep reinforcement learning</subject><subject>Systems operation</subject><subject>Uncertainty</subject><subject>Voltage control</subject><subject>voltage unbalance factor</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rAjEQhkNpodb23kMP-QOxk012Y45W-yEIQtXzEpOJpLhRku3Bf9-IHnqaGeZ5Z-Ah5JnDiHPQr-v5ZFRBJUdCykaJ-oYMuBaaadGoWzIA0IJpreU9ecj5B4DLmssBwZXxSGeIR_qNIfpDsthh7OkCTYoh7tibyejK0uzZOnRIl0dMpg-HSFd9aXB3oiHSTdyavYm2oLOQ-xS2vxfmlHvsHsmdN_uMT9c6JJuP9_X0iy2Wn_PpZMEsl6pnTtQWQQouYVw1xri6FiCtBuVBgZZO8UpYRIlC-zKCs37rjOLIG3BjJ4YELndtOuSc0LfHFDqTTi2H9qypLZras6b2qqlEXi6RgIj_8EZC-S3-AMp_ZNA</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Yoon, Yeunggurl</creator><creator>Yoon, Myungseok</creator><creator>Zhang, Xuehan</creator><creator>Choi, Sungyun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8802-2535</orcidid></search><sort><creationdate>202411</creationdate><title>Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System</title><author>Yoon, Yeunggurl ; Yoon, Myungseok ; Zhang, Xuehan ; Choi, Sungyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-d35ce043140826aad55304c907f07094d7123cee4e39f94d0dcfbda71e160d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep reinforcement learning</topic><topic>hybrid optimization</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>quadratic programming</topic><topic>Reactive power</topic><topic>Real-time systems</topic><topic>safe deep reinforcement learning</topic><topic>Systems operation</topic><topic>Uncertainty</topic><topic>Voltage control</topic><topic>voltage unbalance factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Yeunggurl</creatorcontrib><creatorcontrib>Yoon, Myungseok</creatorcontrib><creatorcontrib>Zhang, Xuehan</creatorcontrib><creatorcontrib>Choi, Sungyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoon, Yeunggurl</au><au>Yoon, Myungseok</au><au>Zhang, Xuehan</au><au>Choi, Sungyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2024-11</date><risdate>2024</risdate><volume>60</volume><issue>6</issue><spage>8273</spage><epage>8283</epage><pages>8273-8283</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learning (DRL) is effectively trained offline for real-time operations that overcome the time-consumption problem in practical implementation. This paper proposes a safe deep reinforcement learning (SDRL) based distribution system operation method to mitigate unbalanced voltage for real-time operation and satisfy operational constraints. The proposed SDRL method incorporates a learning module (LM) and a constraint module (CM), controlling the energy storage system (ESS) to improve voltage balancing. The proposed SDRL method is compared with the hybrid optimization (HO) and typical DRL models regarding time consumption and voltage unbalance mitigation. For this purpose, the models operate in modified IEEE-13 node and IEEE-123 node test feeders.</abstract><pub>IEEE</pub><doi>10.1109/TIA.2024.3446735</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8802-2535</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2024-11, Vol.60 (6), p.8273-8283 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_10640304 |
source | IEEE Electronic Library (IEL) |
subjects | Deep reinforcement learning hybrid optimization Mathematical models Optimization quadratic programming Reactive power Real-time systems safe deep reinforcement learning Systems operation Uncertainty Voltage control voltage unbalance factor |
title | Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safe%20Deep%20Reinforcement%20Learning-Based%20Real-Time%20Operation%20Strategy%20in%20Unbalanced%20Distribution%20System&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Yoon,%20Yeunggurl&rft.date=2024-11&rft.volume=60&rft.issue=6&rft.spage=8273&rft.epage=8283&rft.pages=8273-8283&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2024.3446735&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2024_3446735%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10640304&rfr_iscdi=true |