Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System

Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2024-11, Vol.60 (6), p.8273-8283
Hauptverfasser: Yoon, Yeunggurl, Yoon, Myungseok, Zhang, Xuehan, Choi, Sungyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8283
container_issue 6
container_start_page 8273
container_title IEEE transactions on industry applications
container_volume 60
creator Yoon, Yeunggurl
Yoon, Myungseok
Zhang, Xuehan
Choi, Sungyun
description Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learning (DRL) is effectively trained offline for real-time operations that overcome the time-consumption problem in practical implementation. This paper proposes a safe deep reinforcement learning (SDRL) based distribution system operation method to mitigate unbalanced voltage for real-time operation and satisfy operational constraints. The proposed SDRL method incorporates a learning module (LM) and a constraint module (CM), controlling the energy storage system (ESS) to improve voltage balancing. The proposed SDRL method is compared with the hybrid optimization (HO) and typical DRL models regarding time consumption and voltage unbalance mitigation. For this purpose, the models operate in modified IEEE-13 node and IEEE-123 node test feeders.
doi_str_mv 10.1109/TIA.2024.3446735
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10640304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10640304</ieee_id><sourcerecordid>10_1109_TIA_2024_3446735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-d35ce043140826aad55304c907f07094d7123cee4e39f94d0dcfbda71e160d8d3</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpodb23kMP-QOxk012Y45W-yEIQtXzEpOJpLhRku3Bf9-IHnqaGeZ5Z-Ah5JnDiHPQr-v5ZFRBJUdCykaJ-oYMuBaaadGoWzIA0IJpreU9ecj5B4DLmssBwZXxSGeIR_qNIfpDsthh7OkCTYoh7tibyejK0uzZOnRIl0dMpg-HSFd9aXB3oiHSTdyavYm2oLOQ-xS2vxfmlHvsHsmdN_uMT9c6JJuP9_X0iy2Wn_PpZMEsl6pnTtQWQQouYVw1xri6FiCtBuVBgZZO8UpYRIlC-zKCs37rjOLIG3BjJ4YELndtOuSc0LfHFDqTTi2H9qypLZras6b2qqlEXi6RgIj_8EZC-S3-AMp_ZNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System</title><source>IEEE Electronic Library (IEL)</source><creator>Yoon, Yeunggurl ; Yoon, Myungseok ; Zhang, Xuehan ; Choi, Sungyun</creator><creatorcontrib>Yoon, Yeunggurl ; Yoon, Myungseok ; Zhang, Xuehan ; Choi, Sungyun</creatorcontrib><description>Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learning (DRL) is effectively trained offline for real-time operations that overcome the time-consumption problem in practical implementation. This paper proposes a safe deep reinforcement learning (SDRL) based distribution system operation method to mitigate unbalanced voltage for real-time operation and satisfy operational constraints. The proposed SDRL method incorporates a learning module (LM) and a constraint module (CM), controlling the energy storage system (ESS) to improve voltage balancing. The proposed SDRL method is compared with the hybrid optimization (HO) and typical DRL models regarding time consumption and voltage unbalance mitigation. For this purpose, the models operate in modified IEEE-13 node and IEEE-123 node test feeders.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2024.3446735</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep reinforcement learning ; hybrid optimization ; Mathematical models ; Optimization ; quadratic programming ; Reactive power ; Real-time systems ; safe deep reinforcement learning ; Systems operation ; Uncertainty ; Voltage control ; voltage unbalance factor</subject><ispartof>IEEE transactions on industry applications, 2024-11, Vol.60 (6), p.8273-8283</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c147t-d35ce043140826aad55304c907f07094d7123cee4e39f94d0dcfbda71e160d8d3</cites><orcidid>0000-0001-8802-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10640304$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27906,27907,54740</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10640304$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoon, Yeunggurl</creatorcontrib><creatorcontrib>Yoon, Myungseok</creatorcontrib><creatorcontrib>Zhang, Xuehan</creatorcontrib><creatorcontrib>Choi, Sungyun</creatorcontrib><title>Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learning (DRL) is effectively trained offline for real-time operations that overcome the time-consumption problem in practical implementation. This paper proposes a safe deep reinforcement learning (SDRL) based distribution system operation method to mitigate unbalanced voltage for real-time operation and satisfy operational constraints. The proposed SDRL method incorporates a learning module (LM) and a constraint module (CM), controlling the energy storage system (ESS) to improve voltage balancing. The proposed SDRL method is compared with the hybrid optimization (HO) and typical DRL models regarding time consumption and voltage unbalance mitigation. For this purpose, the models operate in modified IEEE-13 node and IEEE-123 node test feeders.</description><subject>Deep reinforcement learning</subject><subject>hybrid optimization</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>quadratic programming</subject><subject>Reactive power</subject><subject>Real-time systems</subject><subject>safe deep reinforcement learning</subject><subject>Systems operation</subject><subject>Uncertainty</subject><subject>Voltage control</subject><subject>voltage unbalance factor</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1rAjEQhkNpodb23kMP-QOxk012Y45W-yEIQtXzEpOJpLhRku3Bf9-IHnqaGeZ5Z-Ah5JnDiHPQr-v5ZFRBJUdCykaJ-oYMuBaaadGoWzIA0IJpreU9ecj5B4DLmssBwZXxSGeIR_qNIfpDsthh7OkCTYoh7tibyejK0uzZOnRIl0dMpg-HSFd9aXB3oiHSTdyavYm2oLOQ-xS2vxfmlHvsHsmdN_uMT9c6JJuP9_X0iy2Wn_PpZMEsl6pnTtQWQQouYVw1xri6FiCtBuVBgZZO8UpYRIlC-zKCs37rjOLIG3BjJ4YELndtOuSc0LfHFDqTTi2H9qypLZras6b2qqlEXi6RgIj_8EZC-S3-AMp_ZNA</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Yoon, Yeunggurl</creator><creator>Yoon, Myungseok</creator><creator>Zhang, Xuehan</creator><creator>Choi, Sungyun</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8802-2535</orcidid></search><sort><creationdate>202411</creationdate><title>Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System</title><author>Yoon, Yeunggurl ; Yoon, Myungseok ; Zhang, Xuehan ; Choi, Sungyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-d35ce043140826aad55304c907f07094d7123cee4e39f94d0dcfbda71e160d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep reinforcement learning</topic><topic>hybrid optimization</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>quadratic programming</topic><topic>Reactive power</topic><topic>Real-time systems</topic><topic>safe deep reinforcement learning</topic><topic>Systems operation</topic><topic>Uncertainty</topic><topic>Voltage control</topic><topic>voltage unbalance factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Yeunggurl</creatorcontrib><creatorcontrib>Yoon, Myungseok</creatorcontrib><creatorcontrib>Zhang, Xuehan</creatorcontrib><creatorcontrib>Choi, Sungyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoon, Yeunggurl</au><au>Yoon, Myungseok</au><au>Zhang, Xuehan</au><au>Choi, Sungyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2024-11</date><risdate>2024</risdate><volume>60</volume><issue>6</issue><spage>8273</spage><epage>8283</epage><pages>8273-8283</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Unbalanced voltages are one of the voltage quality issues affecting customer devices in distribution systems. Conventional optimization methods are time-consuming to mitigate unbalanced voltage in real time because these approaches must solve each scenario after observation. Deep reinforcement learning (DRL) is effectively trained offline for real-time operations that overcome the time-consumption problem in practical implementation. This paper proposes a safe deep reinforcement learning (SDRL) based distribution system operation method to mitigate unbalanced voltage for real-time operation and satisfy operational constraints. The proposed SDRL method incorporates a learning module (LM) and a constraint module (CM), controlling the energy storage system (ESS) to improve voltage balancing. The proposed SDRL method is compared with the hybrid optimization (HO) and typical DRL models regarding time consumption and voltage unbalance mitigation. For this purpose, the models operate in modified IEEE-13 node and IEEE-123 node test feeders.</abstract><pub>IEEE</pub><doi>10.1109/TIA.2024.3446735</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8802-2535</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2024-11, Vol.60 (6), p.8273-8283
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_10640304
source IEEE Electronic Library (IEL)
subjects Deep reinforcement learning
hybrid optimization
Mathematical models
Optimization
quadratic programming
Reactive power
Real-time systems
safe deep reinforcement learning
Systems operation
Uncertainty
Voltage control
voltage unbalance factor
title Safe Deep Reinforcement Learning-Based Real-Time Operation Strategy in Unbalanced Distribution System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safe%20Deep%20Reinforcement%20Learning-Based%20Real-Time%20Operation%20Strategy%20in%20Unbalanced%20Distribution%20System&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Yoon,%20Yeunggurl&rft.date=2024-11&rft.volume=60&rft.issue=6&rft.spage=8273&rft.epage=8283&rft.pages=8273-8283&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2024.3446735&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2024_3446735%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10640304&rfr_iscdi=true