FSS-DBSCAN: Outsourced Private Density-Based Clustering via Function Secret Sharing

Density-based clustering algorithms such as DBSCAN, are highly effective in handling large datasets and identifying clusters of arbitrary shapes, playing a crucial role in data analysis fields like outlier detection and social networks. Outsourcing DBSCAN to the cloud brings substantial benefits but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2024, Vol.19, p.7759-7773
Hauptverfasser: Fu, Jiaxuan, Cheng, Ke, Song, Anxiao, Xia, Yuheng, Chang, Zhao, Shen, Yulong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7773
container_issue
container_start_page 7759
container_title IEEE transactions on information forensics and security
container_volume 19
creator Fu, Jiaxuan
Cheng, Ke
Song, Anxiao
Xia, Yuheng
Chang, Zhao
Shen, Yulong
description Density-based clustering algorithms such as DBSCAN, are highly effective in handling large datasets and identifying clusters of arbitrary shapes, playing a crucial role in data analysis fields like outlier detection and social networks. Outsourcing DBSCAN to the cloud brings substantial benefits but also raises major privacy concerns regarding the private input data of data owners. Existing private DBSCAN methods often face challenges of inefficiency or potential privacy leakage, hindering their practical deployment. To address these challenges, we introduce FSS-DBSCAN, a three-server MPC platform designed for outsourced private density-based clustering using function secret sharing (FSS). This solution guarantees clustering quality equivalent to plaintext algorithms, ensures comprehensive privacy protection, and achieves top-tier efficiency. The high performance of FSS-DBSCAN is driven by two pivotal strategies. First, we devise an MPC-friendly DBSCAN algorithm that is highly compatible with efficient secret-sharing-based cryptographic protocols and benefits from GPU acceleration. Second, we construct novel FSS-based protocols tailored for complex operations integral to our DBSCAN variant, such as Euclidean distance comparison and point assignment, and further optimize their computation through tensorization techniques. We implement our platform as an extensible system on top of PyTorch that leverages GPU hardware acceleration for cryptographic and tensorized operations. These innovations enable FSS-DBSCAN to significantly outperform ppDBSCAN (AsiaCCS 2021), reducing the clustering time for 5000 samples to approximately 2 hours, achieving an 83.4\times speed improvement.
doi_str_mv 10.1109/TIFS.2024.3446233
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10639452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10639452</ieee_id><sourcerecordid>10_1109_TIFS_2024_3446233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-c6db994a0c91cf87a27b27bbd0a4d98eae8abda18476e5cd320fab5efb31661e3</originalsourceid><addsrcrecordid>eNpNkFFLwzAUhYMoOKc_QPAhf6AzN0mz1retWh0MJ2Q-lzS91cjsJEkH-_eubIhw4B7Ovec-fITcApsAsPx-vSj1hDMuJ0JKxYU4IyNIU5UoxuH8z4O4JFchfDEmJahsRHSpdfI418Xs9YGu-hi2vbfY0DfvdiYifcQuuLhP5iYc0mLTh4jedR905wwt-85Gt-2oRusxUv1pht01uWjNJuDNaY7Je_m0Ll6S5ep5UcyWiQWZxcSqps5zaZjNwbbZ1PBpfVDdMCObPEODmakbA5mcKkxtIzhrTZ1iWwtQClCMCRz_Wr8NwWNb_Xj3bfy-AlYNVKqBSjVQqU5UDp27Y8ch4r97JXKZcvELLJJfHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>FSS-DBSCAN: Outsourced Private Density-Based Clustering via Function Secret Sharing</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Jiaxuan ; Cheng, Ke ; Song, Anxiao ; Xia, Yuheng ; Chang, Zhao ; Shen, Yulong</creator><creatorcontrib>Fu, Jiaxuan ; Cheng, Ke ; Song, Anxiao ; Xia, Yuheng ; Chang, Zhao ; Shen, Yulong</creatorcontrib><description>Density-based clustering algorithms such as DBSCAN, are highly effective in handling large datasets and identifying clusters of arbitrary shapes, playing a crucial role in data analysis fields like outlier detection and social networks. Outsourcing DBSCAN to the cloud brings substantial benefits but also raises major privacy concerns regarding the private input data of data owners. Existing private DBSCAN methods often face challenges of inefficiency or potential privacy leakage, hindering their practical deployment. To address these challenges, we introduce FSS-DBSCAN, a three-server MPC platform designed for outsourced private density-based clustering using function secret sharing (FSS). This solution guarantees clustering quality equivalent to plaintext algorithms, ensures comprehensive privacy protection, and achieves top-tier efficiency. The high performance of FSS-DBSCAN is driven by two pivotal strategies. First, we devise an MPC-friendly DBSCAN algorithm that is highly compatible with efficient secret-sharing-based cryptographic protocols and benefits from GPU acceleration. Second, we construct novel FSS-based protocols tailored for complex operations integral to our DBSCAN variant, such as Euclidean distance comparison and point assignment, and further optimize their computation through tensorization techniques. We implement our platform as an extensible system on top of PyTorch that leverages GPU hardware acceleration for cryptographic and tensorized operations. These innovations enable FSS-DBSCAN to significantly outperform ppDBSCAN (AsiaCCS 2021), reducing the clustering time for 5000 samples to approximately 2 hours, achieving an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;83.4\times &lt;/tex-math&gt;&lt;/inline-formula&gt; speed improvement.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2024.3446233</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>additive secret sharing ; Additives ; Clustering algorithms ; Cryptography ; DBSCAN ; Distributed databases ; Graphics processing units ; Outsourcing ; Protocols ; Secure clustering ; secure comparison</subject><ispartof>IEEE transactions on information forensics and security, 2024, Vol.19, p.7759-7773</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-c6db994a0c91cf87a27b27bbd0a4d98eae8abda18476e5cd320fab5efb31661e3</cites><orcidid>0000-0002-6846-7614 ; 0000-0001-7948-819X ; 0000-0002-8448-705X ; 0000-0002-7020-2156 ; 0000-0001-6616-265X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10639452$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10639452$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Jiaxuan</creatorcontrib><creatorcontrib>Cheng, Ke</creatorcontrib><creatorcontrib>Song, Anxiao</creatorcontrib><creatorcontrib>Xia, Yuheng</creatorcontrib><creatorcontrib>Chang, Zhao</creatorcontrib><creatorcontrib>Shen, Yulong</creatorcontrib><title>FSS-DBSCAN: Outsourced Private Density-Based Clustering via Function Secret Sharing</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Density-based clustering algorithms such as DBSCAN, are highly effective in handling large datasets and identifying clusters of arbitrary shapes, playing a crucial role in data analysis fields like outlier detection and social networks. Outsourcing DBSCAN to the cloud brings substantial benefits but also raises major privacy concerns regarding the private input data of data owners. Existing private DBSCAN methods often face challenges of inefficiency or potential privacy leakage, hindering their practical deployment. To address these challenges, we introduce FSS-DBSCAN, a three-server MPC platform designed for outsourced private density-based clustering using function secret sharing (FSS). This solution guarantees clustering quality equivalent to plaintext algorithms, ensures comprehensive privacy protection, and achieves top-tier efficiency. The high performance of FSS-DBSCAN is driven by two pivotal strategies. First, we devise an MPC-friendly DBSCAN algorithm that is highly compatible with efficient secret-sharing-based cryptographic protocols and benefits from GPU acceleration. Second, we construct novel FSS-based protocols tailored for complex operations integral to our DBSCAN variant, such as Euclidean distance comparison and point assignment, and further optimize their computation through tensorization techniques. We implement our platform as an extensible system on top of PyTorch that leverages GPU hardware acceleration for cryptographic and tensorized operations. These innovations enable FSS-DBSCAN to significantly outperform ppDBSCAN (AsiaCCS 2021), reducing the clustering time for 5000 samples to approximately 2 hours, achieving an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;83.4\times &lt;/tex-math&gt;&lt;/inline-formula&gt; speed improvement.</description><subject>additive secret sharing</subject><subject>Additives</subject><subject>Clustering algorithms</subject><subject>Cryptography</subject><subject>DBSCAN</subject><subject>Distributed databases</subject><subject>Graphics processing units</subject><subject>Outsourcing</subject><subject>Protocols</subject><subject>Secure clustering</subject><subject>secure comparison</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAUhYMoOKc_QPAhf6AzN0mz1retWh0MJ2Q-lzS91cjsJEkH-_eubIhw4B7Ovec-fITcApsAsPx-vSj1hDMuJ0JKxYU4IyNIU5UoxuH8z4O4JFchfDEmJahsRHSpdfI418Xs9YGu-hi2vbfY0DfvdiYifcQuuLhP5iYc0mLTh4jedR905wwt-85Gt-2oRusxUv1pht01uWjNJuDNaY7Je_m0Ll6S5ep5UcyWiQWZxcSqps5zaZjNwbbZ1PBpfVDdMCObPEODmakbA5mcKkxtIzhrTZ1iWwtQClCMCRz_Wr8NwWNb_Xj3bfy-AlYNVKqBSjVQqU5UDp27Y8ch4r97JXKZcvELLJJfHQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fu, Jiaxuan</creator><creator>Cheng, Ke</creator><creator>Song, Anxiao</creator><creator>Xia, Yuheng</creator><creator>Chang, Zhao</creator><creator>Shen, Yulong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6846-7614</orcidid><orcidid>https://orcid.org/0000-0001-7948-819X</orcidid><orcidid>https://orcid.org/0000-0002-8448-705X</orcidid><orcidid>https://orcid.org/0000-0002-7020-2156</orcidid><orcidid>https://orcid.org/0000-0001-6616-265X</orcidid></search><sort><creationdate>2024</creationdate><title>FSS-DBSCAN: Outsourced Private Density-Based Clustering via Function Secret Sharing</title><author>Fu, Jiaxuan ; Cheng, Ke ; Song, Anxiao ; Xia, Yuheng ; Chang, Zhao ; Shen, Yulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-c6db994a0c91cf87a27b27bbd0a4d98eae8abda18476e5cd320fab5efb31661e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>additive secret sharing</topic><topic>Additives</topic><topic>Clustering algorithms</topic><topic>Cryptography</topic><topic>DBSCAN</topic><topic>Distributed databases</topic><topic>Graphics processing units</topic><topic>Outsourcing</topic><topic>Protocols</topic><topic>Secure clustering</topic><topic>secure comparison</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Jiaxuan</creatorcontrib><creatorcontrib>Cheng, Ke</creatorcontrib><creatorcontrib>Song, Anxiao</creatorcontrib><creatorcontrib>Xia, Yuheng</creatorcontrib><creatorcontrib>Chang, Zhao</creatorcontrib><creatorcontrib>Shen, Yulong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Jiaxuan</au><au>Cheng, Ke</au><au>Song, Anxiao</au><au>Xia, Yuheng</au><au>Chang, Zhao</au><au>Shen, Yulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FSS-DBSCAN: Outsourced Private Density-Based Clustering via Function Secret Sharing</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2024</date><risdate>2024</risdate><volume>19</volume><spage>7759</spage><epage>7773</epage><pages>7759-7773</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Density-based clustering algorithms such as DBSCAN, are highly effective in handling large datasets and identifying clusters of arbitrary shapes, playing a crucial role in data analysis fields like outlier detection and social networks. Outsourcing DBSCAN to the cloud brings substantial benefits but also raises major privacy concerns regarding the private input data of data owners. Existing private DBSCAN methods often face challenges of inefficiency or potential privacy leakage, hindering their practical deployment. To address these challenges, we introduce FSS-DBSCAN, a three-server MPC platform designed for outsourced private density-based clustering using function secret sharing (FSS). This solution guarantees clustering quality equivalent to plaintext algorithms, ensures comprehensive privacy protection, and achieves top-tier efficiency. The high performance of FSS-DBSCAN is driven by two pivotal strategies. First, we devise an MPC-friendly DBSCAN algorithm that is highly compatible with efficient secret-sharing-based cryptographic protocols and benefits from GPU acceleration. Second, we construct novel FSS-based protocols tailored for complex operations integral to our DBSCAN variant, such as Euclidean distance comparison and point assignment, and further optimize their computation through tensorization techniques. We implement our platform as an extensible system on top of PyTorch that leverages GPU hardware acceleration for cryptographic and tensorized operations. These innovations enable FSS-DBSCAN to significantly outperform ppDBSCAN (AsiaCCS 2021), reducing the clustering time for 5000 samples to approximately 2 hours, achieving an &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;83.4\times &lt;/tex-math&gt;&lt;/inline-formula&gt; speed improvement.</abstract><pub>IEEE</pub><doi>10.1109/TIFS.2024.3446233</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6846-7614</orcidid><orcidid>https://orcid.org/0000-0001-7948-819X</orcidid><orcidid>https://orcid.org/0000-0002-8448-705X</orcidid><orcidid>https://orcid.org/0000-0002-7020-2156</orcidid><orcidid>https://orcid.org/0000-0001-6616-265X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2024, Vol.19, p.7759-7773
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_10639452
source IEEE Electronic Library (IEL)
subjects additive secret sharing
Additives
Clustering algorithms
Cryptography
DBSCAN
Distributed databases
Graphics processing units
Outsourcing
Protocols
Secure clustering
secure comparison
title FSS-DBSCAN: Outsourced Private Density-Based Clustering via Function Secret Sharing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FSS-DBSCAN:%20Outsourced%20Private%20Density-Based%20Clustering%20via%20Function%20Secret%20Sharing&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Fu,%20Jiaxuan&rft.date=2024&rft.volume=19&rft.spage=7759&rft.epage=7773&rft.pages=7759-7773&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2024.3446233&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2024_3446233%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10639452&rfr_iscdi=true