Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling
Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applicatio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on artificial intelligence 2024-08, p.1-13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on artificial intelligence |
container_volume | |
creator | Fang, Wenxuan Du, Wei Yu, Guo He, Renchu Tang, Yang Jin, Yaochu |
description | Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applications, suitable preferences of decision makers are often difficult to generalize and summarize from their operational experience. This paper proposes a novel framework called preference prediction-based evolutionary multi-objective optimization (PP-EMO). In PP-EMO, suitable preferences for a new environment can be automatically obtained from historical operational experience by a machine learning-based preference prediction model when we feed the model with the input of the optimization environment. We have found that the predicted preference is able to guide the optimization to efficiently obtain a set of promising scheduling scenarios. Finally, we conducted comparative tests across various environments, and the experimental results demonstrate that the proposed PP-EMO framework outperforms existing methods. Compared to no preference, PP-EMO reduces operating costs by about 25% and decreases blending errors by 50% under demanding operational conditions. |
doi_str_mv | 10.1109/TAI.2024.3444736 |
format | Article |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10638800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638800</ieee_id><sourcerecordid>10638800</sourcerecordid><originalsourceid>FETCH-ieee_primary_106388003</originalsourceid><addsrcrecordid>eNqFjUuLwjAUhcPAgOK4dzGL_IHWmzTWuhzF10IUdF_S9ta5EhNJWkF_vRVmP6vz-A4cxkYCYiFgNj79bGMJUsWJUmqapB-sL9OZiNQkEz02DOECAHIipJTTPqsPHmv0aEvkna2obMjZqNABK768O9O-s_YPvmtNQ5ErLthN7sj3t4au9NRvzmvn-VoHZ8ginxu0FdkzP5a_WLVdd_5in7U2AYd_OmDfq-VpsYkIEfObp2t3kQtIkywDSP7BL72bR6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Wenxuan ; Du, Wei ; Yu, Guo ; He, Renchu ; Tang, Yang ; Jin, Yaochu</creator><creatorcontrib>Fang, Wenxuan ; Du, Wei ; Yu, Guo ; He, Renchu ; Tang, Yang ; Jin, Yaochu</creatorcontrib><description>Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applications, suitable preferences of decision makers are often difficult to generalize and summarize from their operational experience. This paper proposes a novel framework called preference prediction-based evolutionary multi-objective optimization (PP-EMO). In PP-EMO, suitable preferences for a new environment can be automatically obtained from historical operational experience by a machine learning-based preference prediction model when we feed the model with the input of the optimization environment. We have found that the predicted preference is able to guide the optimization to efficiently obtain a set of promising scheduling scenarios. Finally, we conducted comparative tests across various environments, and the experimental results demonstrate that the proposed PP-EMO framework outperforms existing methods. Compared to no preference, PP-EMO reduces operating costs by about 25% and decreases blending errors by 50% under demanding operational conditions.</description><identifier>EISSN: 2691-4581</identifier><identifier>DOI: 10.1109/TAI.2024.3444736</identifier><identifier>CODEN: ITAICB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dynamic scheduling ; Evolutionary multiobjective optimization (EMO) ; gasoline blending scheduling ; Gaussian process ; Job shop scheduling ; Oils ; Optimization ; Petroleum ; Production ; Schedules ; user-preference</subject><ispartof>IEEE transactions on artificial intelligence, 2024-08, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10638800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Wenxuan</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Yu, Guo</creatorcontrib><creatorcontrib>He, Renchu</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Jin, Yaochu</creatorcontrib><title>Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling</title><title>IEEE transactions on artificial intelligence</title><addtitle>TAI</addtitle><description>Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applications, suitable preferences of decision makers are often difficult to generalize and summarize from their operational experience. This paper proposes a novel framework called preference prediction-based evolutionary multi-objective optimization (PP-EMO). In PP-EMO, suitable preferences for a new environment can be automatically obtained from historical operational experience by a machine learning-based preference prediction model when we feed the model with the input of the optimization environment. We have found that the predicted preference is able to guide the optimization to efficiently obtain a set of promising scheduling scenarios. Finally, we conducted comparative tests across various environments, and the experimental results demonstrate that the proposed PP-EMO framework outperforms existing methods. Compared to no preference, PP-EMO reduces operating costs by about 25% and decreases blending errors by 50% under demanding operational conditions.</description><subject>Dynamic scheduling</subject><subject>Evolutionary multiobjective optimization (EMO)</subject><subject>gasoline blending scheduling</subject><subject>Gaussian process</subject><subject>Job shop scheduling</subject><subject>Oils</subject><subject>Optimization</subject><subject>Petroleum</subject><subject>Production</subject><subject>Schedules</subject><subject>user-preference</subject><issn>2691-4581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjUuLwjAUhcPAgOK4dzGL_IHWmzTWuhzF10IUdF_S9ta5EhNJWkF_vRVmP6vz-A4cxkYCYiFgNj79bGMJUsWJUmqapB-sL9OZiNQkEz02DOECAHIipJTTPqsPHmv0aEvkna2obMjZqNABK768O9O-s_YPvmtNQ5ErLthN7sj3t4au9NRvzmvn-VoHZ8ginxu0FdkzP5a_WLVdd_5in7U2AYd_OmDfq-VpsYkIEfObp2t3kQtIkywDSP7BL72bR6Q</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>Fang, Wenxuan</creator><creator>Du, Wei</creator><creator>Yu, Guo</creator><creator>He, Renchu</creator><creator>Tang, Yang</creator><creator>Jin, Yaochu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>20240816</creationdate><title>Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling</title><author>Fang, Wenxuan ; Du, Wei ; Yu, Guo ; He, Renchu ; Tang, Yang ; Jin, Yaochu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106388003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamic scheduling</topic><topic>Evolutionary multiobjective optimization (EMO)</topic><topic>gasoline blending scheduling</topic><topic>Gaussian process</topic><topic>Job shop scheduling</topic><topic>Oils</topic><topic>Optimization</topic><topic>Petroleum</topic><topic>Production</topic><topic>Schedules</topic><topic>user-preference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Wenxuan</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Yu, Guo</creatorcontrib><creatorcontrib>He, Renchu</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Jin, Yaochu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Wenxuan</au><au>Du, Wei</au><au>Yu, Guo</au><au>He, Renchu</au><au>Tang, Yang</au><au>Jin, Yaochu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling</atitle><jtitle>IEEE transactions on artificial intelligence</jtitle><stitle>TAI</stitle><date>2024-08-16</date><risdate>2024</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><eissn>2691-4581</eissn><coden>ITAICB</coden><abstract>Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applications, suitable preferences of decision makers are often difficult to generalize and summarize from their operational experience. This paper proposes a novel framework called preference prediction-based evolutionary multi-objective optimization (PP-EMO). In PP-EMO, suitable preferences for a new environment can be automatically obtained from historical operational experience by a machine learning-based preference prediction model when we feed the model with the input of the optimization environment. We have found that the predicted preference is able to guide the optimization to efficiently obtain a set of promising scheduling scenarios. Finally, we conducted comparative tests across various environments, and the experimental results demonstrate that the proposed PP-EMO framework outperforms existing methods. Compared to no preference, PP-EMO reduces operating costs by about 25% and decreases blending errors by 50% under demanding operational conditions.</abstract><pub>IEEE</pub><doi>10.1109/TAI.2024.3444736</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2691-4581 |
ispartof | IEEE transactions on artificial intelligence, 2024-08, p.1-13 |
issn | 2691-4581 |
language | eng |
recordid | cdi_ieee_primary_10638800 |
source | IEEE Electronic Library (IEL) |
subjects | Dynamic scheduling Evolutionary multiobjective optimization (EMO) gasoline blending scheduling Gaussian process Job shop scheduling Oils Optimization Petroleum Production Schedules user-preference |
title | Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preference%20Prediction-based%20Evolutionary%20Multi-objective%20Optimization%20for%20Gasoline%20Blending%20Scheduling&rft.jtitle=IEEE%20transactions%20on%20artificial%20intelligence&rft.au=Fang,%20Wenxuan&rft.date=2024-08-16&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.eissn=2691-4581&rft.coden=ITAICB&rft_id=info:doi/10.1109/TAI.2024.3444736&rft_dat=%3Cieee_RIE%3E10638800%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10638800&rfr_iscdi=true |