Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling

Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applicatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on artificial intelligence 2024-08, p.1-13
Hauptverfasser: Fang, Wenxuan, Du, Wei, Yu, Guo, He, Renchu, Tang, Yang, Jin, Yaochu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on artificial intelligence
container_volume
creator Fang, Wenxuan
Du, Wei
Yu, Guo
He, Renchu
Tang, Yang
Jin, Yaochu
description Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applications, suitable preferences of decision makers are often difficult to generalize and summarize from their operational experience. This paper proposes a novel framework called preference prediction-based evolutionary multi-objective optimization (PP-EMO). In PP-EMO, suitable preferences for a new environment can be automatically obtained from historical operational experience by a machine learning-based preference prediction model when we feed the model with the input of the optimization environment. We have found that the predicted preference is able to guide the optimization to efficiently obtain a set of promising scheduling scenarios. Finally, we conducted comparative tests across various environments, and the experimental results demonstrate that the proposed PP-EMO framework outperforms existing methods. Compared to no preference, PP-EMO reduces operating costs by about 25% and decreases blending errors by 50% under demanding operational conditions.
doi_str_mv 10.1109/TAI.2024.3444736
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10638800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638800</ieee_id><sourcerecordid>10638800</sourcerecordid><originalsourceid>FETCH-ieee_primary_106388003</originalsourceid><addsrcrecordid>eNqFjUuLwjAUhcPAgOK4dzGL_IHWmzTWuhzF10IUdF_S9ta5EhNJWkF_vRVmP6vz-A4cxkYCYiFgNj79bGMJUsWJUmqapB-sL9OZiNQkEz02DOECAHIipJTTPqsPHmv0aEvkna2obMjZqNABK768O9O-s_YPvmtNQ5ErLthN7sj3t4au9NRvzmvn-VoHZ8ginxu0FdkzP5a_WLVdd_5in7U2AYd_OmDfq-VpsYkIEfObp2t3kQtIkywDSP7BL72bR6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Wenxuan ; Du, Wei ; Yu, Guo ; He, Renchu ; Tang, Yang ; Jin, Yaochu</creator><creatorcontrib>Fang, Wenxuan ; Du, Wei ; Yu, Guo ; He, Renchu ; Tang, Yang ; Jin, Yaochu</creatorcontrib><description>Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applications, suitable preferences of decision makers are often difficult to generalize and summarize from their operational experience. This paper proposes a novel framework called preference prediction-based evolutionary multi-objective optimization (PP-EMO). In PP-EMO, suitable preferences for a new environment can be automatically obtained from historical operational experience by a machine learning-based preference prediction model when we feed the model with the input of the optimization environment. We have found that the predicted preference is able to guide the optimization to efficiently obtain a set of promising scheduling scenarios. Finally, we conducted comparative tests across various environments, and the experimental results demonstrate that the proposed PP-EMO framework outperforms existing methods. Compared to no preference, PP-EMO reduces operating costs by about 25% and decreases blending errors by 50% under demanding operational conditions.</description><identifier>EISSN: 2691-4581</identifier><identifier>DOI: 10.1109/TAI.2024.3444736</identifier><identifier>CODEN: ITAICB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dynamic scheduling ; Evolutionary multiobjective optimization (EMO) ; gasoline blending scheduling ; Gaussian process ; Job shop scheduling ; Oils ; Optimization ; Petroleum ; Production ; Schedules ; user-preference</subject><ispartof>IEEE transactions on artificial intelligence, 2024-08, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10638800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fang, Wenxuan</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Yu, Guo</creatorcontrib><creatorcontrib>He, Renchu</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Jin, Yaochu</creatorcontrib><title>Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling</title><title>IEEE transactions on artificial intelligence</title><addtitle>TAI</addtitle><description>Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applications, suitable preferences of decision makers are often difficult to generalize and summarize from their operational experience. This paper proposes a novel framework called preference prediction-based evolutionary multi-objective optimization (PP-EMO). In PP-EMO, suitable preferences for a new environment can be automatically obtained from historical operational experience by a machine learning-based preference prediction model when we feed the model with the input of the optimization environment. We have found that the predicted preference is able to guide the optimization to efficiently obtain a set of promising scheduling scenarios. Finally, we conducted comparative tests across various environments, and the experimental results demonstrate that the proposed PP-EMO framework outperforms existing methods. Compared to no preference, PP-EMO reduces operating costs by about 25% and decreases blending errors by 50% under demanding operational conditions.</description><subject>Dynamic scheduling</subject><subject>Evolutionary multiobjective optimization (EMO)</subject><subject>gasoline blending scheduling</subject><subject>Gaussian process</subject><subject>Job shop scheduling</subject><subject>Oils</subject><subject>Optimization</subject><subject>Petroleum</subject><subject>Production</subject><subject>Schedules</subject><subject>user-preference</subject><issn>2691-4581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjUuLwjAUhcPAgOK4dzGL_IHWmzTWuhzF10IUdF_S9ta5EhNJWkF_vRVmP6vz-A4cxkYCYiFgNj79bGMJUsWJUmqapB-sL9OZiNQkEz02DOECAHIipJTTPqsPHmv0aEvkna2obMjZqNABK768O9O-s_YPvmtNQ5ErLthN7sj3t4au9NRvzmvn-VoHZ8ginxu0FdkzP5a_WLVdd_5in7U2AYd_OmDfq-VpsYkIEfObp2t3kQtIkywDSP7BL72bR6Q</recordid><startdate>20240816</startdate><enddate>20240816</enddate><creator>Fang, Wenxuan</creator><creator>Du, Wei</creator><creator>Yu, Guo</creator><creator>He, Renchu</creator><creator>Tang, Yang</creator><creator>Jin, Yaochu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>20240816</creationdate><title>Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling</title><author>Fang, Wenxuan ; Du, Wei ; Yu, Guo ; He, Renchu ; Tang, Yang ; Jin, Yaochu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106388003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamic scheduling</topic><topic>Evolutionary multiobjective optimization (EMO)</topic><topic>gasoline blending scheduling</topic><topic>Gaussian process</topic><topic>Job shop scheduling</topic><topic>Oils</topic><topic>Optimization</topic><topic>Petroleum</topic><topic>Production</topic><topic>Schedules</topic><topic>user-preference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Wenxuan</creatorcontrib><creatorcontrib>Du, Wei</creatorcontrib><creatorcontrib>Yu, Guo</creatorcontrib><creatorcontrib>He, Renchu</creatorcontrib><creatorcontrib>Tang, Yang</creatorcontrib><creatorcontrib>Jin, Yaochu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fang, Wenxuan</au><au>Du, Wei</au><au>Yu, Guo</au><au>He, Renchu</au><au>Tang, Yang</au><au>Jin, Yaochu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling</atitle><jtitle>IEEE transactions on artificial intelligence</jtitle><stitle>TAI</stitle><date>2024-08-16</date><risdate>2024</risdate><spage>1</spage><epage>13</epage><pages>1-13</pages><eissn>2691-4581</eissn><coden>ITAICB</coden><abstract>Gasoline blending scheduling is challenging, involving multiple conflicting objectives and a large decision space with many mixed integers. Due to these difficulties, one promising solution is to use preference-based multi-objective evolutionary algorithms (PBMOEAs). However, in practical applications, suitable preferences of decision makers are often difficult to generalize and summarize from their operational experience. This paper proposes a novel framework called preference prediction-based evolutionary multi-objective optimization (PP-EMO). In PP-EMO, suitable preferences for a new environment can be automatically obtained from historical operational experience by a machine learning-based preference prediction model when we feed the model with the input of the optimization environment. We have found that the predicted preference is able to guide the optimization to efficiently obtain a set of promising scheduling scenarios. Finally, we conducted comparative tests across various environments, and the experimental results demonstrate that the proposed PP-EMO framework outperforms existing methods. Compared to no preference, PP-EMO reduces operating costs by about 25% and decreases blending errors by 50% under demanding operational conditions.</abstract><pub>IEEE</pub><doi>10.1109/TAI.2024.3444736</doi></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2691-4581
ispartof IEEE transactions on artificial intelligence, 2024-08, p.1-13
issn 2691-4581
language eng
recordid cdi_ieee_primary_10638800
source IEEE Electronic Library (IEL)
subjects Dynamic scheduling
Evolutionary multiobjective optimization (EMO)
gasoline blending scheduling
Gaussian process
Job shop scheduling
Oils
Optimization
Petroleum
Production
Schedules
user-preference
title Preference Prediction-based Evolutionary Multi-objective Optimization for Gasoline Blending Scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A53%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preference%20Prediction-based%20Evolutionary%20Multi-objective%20Optimization%20for%20Gasoline%20Blending%20Scheduling&rft.jtitle=IEEE%20transactions%20on%20artificial%20intelligence&rft.au=Fang,%20Wenxuan&rft.date=2024-08-16&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.eissn=2691-4581&rft.coden=ITAICB&rft_id=info:doi/10.1109/TAI.2024.3444736&rft_dat=%3Cieee_RIE%3E10638800%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10638800&rfr_iscdi=true