Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions
The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limite...
Gespeichert in:
Veröffentlicht in: | IEEE journal of oceanic engineering 2024-10, Vol.49 (4), p.1675-1694 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1694 |
---|---|
container_issue | 4 |
container_start_page | 1675 |
container_title | IEEE journal of oceanic engineering |
container_volume | 49 |
creator | Trucco, Andrea |
description | The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limited time interval: an extremely time-consuming process. This study investigated how to approach the spectral average using only very few noise recordings for each wind speed, leveraging supervised and unsupervised machine learning techniques. Three different prediction methods, based on mean and interpolation, principal component analysis (PCA), and nonnegative matrix factorization, in combination with four techniques for coefficient estimation as the wind varies, are tested. Prediction based on principal component analysis, combined with Gaussian process regression, outperforms other methods in all three case studies considered. The latter, in addition to the problem described above, include the prediction of the noise spectrum: at wind speeds where no noise recordings are available, and using a few recordings acquired at another (nominally identical) wind turbine. |
doi_str_mv | 10.1109/JOE.2024.3415753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10638433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638433</ieee_id><sourcerecordid>3117134869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-3caf78ad0c687232fa593863535746cace471e6216ad03c3c0eb7a96d48f0fb3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKt7Fy4Crqcmc_OYLKXWZ7GCFZchk8lIis3UJIP03zulXbi6cPjOufAhdEnJhFKibp4Xs0lJSjYBRrnkcIRGlPOqoELRYzQiIFihCFen6CylFSGUMalG6OUtusbb7MMX_giNi78mu4hfO58cft84m6PBd93ahyFvcL3Fnz40eNnH2geHp13I0dd99l1I5-ikNd_JXRzuGC3vZ8vpYzFfPDxNb-eFLanMBVjTyso0xIpKllC2hiuoBHDgkglrrGOSOlFSMTBgwRJXS6NEw6qWtDWM0fV-dhO7n96lrFddH8PwUQOlkgKrhBoosqds7FKKrtWb6NcmbjUlemdMD8b0zpg-GBsqV_uKd879wwVUDAD-ACC_Zyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117134869</pqid></control><display><type>article</type><title>Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions</title><source>IEEE Electronic Library (IEL)</source><creator>Trucco, Andrea</creator><creatorcontrib>Trucco, Andrea</creatorcontrib><description>The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limited time interval: an extremely time-consuming process. This study investigated how to approach the spectral average using only very few noise recordings for each wind speed, leveraging supervised and unsupervised machine learning techniques. Three different prediction methods, based on mean and interpolation, principal component analysis (PCA), and nonnegative matrix factorization, in combination with four techniques for coefficient estimation as the wind varies, are tested. Prediction based on principal component analysis, combined with Gaussian process regression, outperforms other methods in all three case studies considered. The latter, in addition to the problem described above, include the prediction of the noise spectrum: at wind speeds where no noise recordings are available, and using a few recordings acquired at another (nominally identical) wind turbine.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2024.3415753</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Gaussian process ; Machine learning ; Marine ecosystems ; Noise ; Noise prediction ; Noise spectra ; Offshore ; Offshore energy sources ; Offshore wind turbine ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Recording ; spectral prediction ; supervised and unsupervised learning ; Supervised learning ; Turbine engines ; Turbines ; Underwater ; Underwater noise ; Unsupervised learning ; Vectors ; Wind farms ; Wind power ; Wind speed ; Wind turbines</subject><ispartof>IEEE journal of oceanic engineering, 2024-10, Vol.49 (4), p.1675-1694</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-3caf78ad0c687232fa593863535746cace471e6216ad03c3c0eb7a96d48f0fb3</cites><orcidid>0000-0003-1189-6191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638433$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids></links><search><creatorcontrib>Trucco, Andrea</creatorcontrib><title>Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limited time interval: an extremely time-consuming process. This study investigated how to approach the spectral average using only very few noise recordings for each wind speed, leveraging supervised and unsupervised machine learning techniques. Three different prediction methods, based on mean and interpolation, principal component analysis (PCA), and nonnegative matrix factorization, in combination with four techniques for coefficient estimation as the wind varies, are tested. Prediction based on principal component analysis, combined with Gaussian process regression, outperforms other methods in all three case studies considered. The latter, in addition to the problem described above, include the prediction of the noise spectrum: at wind speeds where no noise recordings are available, and using a few recordings acquired at another (nominally identical) wind turbine.</description><subject>Gaussian process</subject><subject>Machine learning</subject><subject>Marine ecosystems</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Noise spectra</subject><subject>Offshore</subject><subject>Offshore energy sources</subject><subject>Offshore wind turbine</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Recording</subject><subject>spectral prediction</subject><subject>supervised and unsupervised learning</subject><subject>Supervised learning</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Underwater</subject><subject>Underwater noise</subject><subject>Unsupervised learning</subject><subject>Vectors</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKt7Fy4Crqcmc_OYLKXWZ7GCFZchk8lIis3UJIP03zulXbi6cPjOufAhdEnJhFKibp4Xs0lJSjYBRrnkcIRGlPOqoELRYzQiIFihCFen6CylFSGUMalG6OUtusbb7MMX_giNi78mu4hfO58cft84m6PBd93ahyFvcL3Fnz40eNnH2geHp13I0dd99l1I5-ikNd_JXRzuGC3vZ8vpYzFfPDxNb-eFLanMBVjTyso0xIpKllC2hiuoBHDgkglrrGOSOlFSMTBgwRJXS6NEw6qWtDWM0fV-dhO7n96lrFddH8PwUQOlkgKrhBoosqds7FKKrtWb6NcmbjUlemdMD8b0zpg-GBsqV_uKd879wwVUDAD-ACC_Zyo</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Trucco, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1189-6191</orcidid></search><sort><creationdate>202410</creationdate><title>Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions</title><author>Trucco, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-3caf78ad0c687232fa593863535746cace471e6216ad03c3c0eb7a96d48f0fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gaussian process</topic><topic>Machine learning</topic><topic>Marine ecosystems</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Noise spectra</topic><topic>Offshore</topic><topic>Offshore energy sources</topic><topic>Offshore wind turbine</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Recording</topic><topic>spectral prediction</topic><topic>supervised and unsupervised learning</topic><topic>Supervised learning</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Underwater</topic><topic>Underwater noise</topic><topic>Unsupervised learning</topic><topic>Vectors</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trucco, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trucco, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2024-10</date><risdate>2024</risdate><volume>49</volume><issue>4</issue><spage>1675</spage><epage>1694</epage><pages>1675-1694</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limited time interval: an extremely time-consuming process. This study investigated how to approach the spectral average using only very few noise recordings for each wind speed, leveraging supervised and unsupervised machine learning techniques. Three different prediction methods, based on mean and interpolation, principal component analysis (PCA), and nonnegative matrix factorization, in combination with four techniques for coefficient estimation as the wind varies, are tested. Prediction based on principal component analysis, combined with Gaussian process regression, outperforms other methods in all three case studies considered. The latter, in addition to the problem described above, include the prediction of the noise spectrum: at wind speeds where no noise recordings are available, and using a few recordings acquired at another (nominally identical) wind turbine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2024.3415753</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1189-6191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9059 |
ispartof | IEEE journal of oceanic engineering, 2024-10, Vol.49 (4), p.1675-1694 |
issn | 0364-9059 1558-1691 |
language | eng |
recordid | cdi_ieee_primary_10638433 |
source | IEEE Electronic Library (IEL) |
subjects | Gaussian process Machine learning Marine ecosystems Noise Noise prediction Noise spectra Offshore Offshore energy sources Offshore wind turbine Principal component analysis principal component analysis (PCA) Principal components analysis Recording spectral prediction supervised and unsupervised learning Supervised learning Turbine engines Turbines Underwater Underwater noise Unsupervised learning Vectors Wind farms Wind power Wind speed Wind turbines |
title | Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Underwater%20Noise%20Spectra%20Dominated%20by%20Wind%20Turbine%20Contributions&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Trucco,%20Andrea&rft.date=2024-10&rft.volume=49&rft.issue=4&rft.spage=1675&rft.epage=1694&rft.pages=1675-1694&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2024.3415753&rft_dat=%3Cproquest_ieee_%3E3117134869%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117134869&rft_id=info:pmid/&rft_ieee_id=10638433&rfr_iscdi=true |