Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions

The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of oceanic engineering 2024-10, Vol.49 (4), p.1675-1694
1. Verfasser: Trucco, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1694
container_issue 4
container_start_page 1675
container_title IEEE journal of oceanic engineering
container_volume 49
creator Trucco, Andrea
description The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limited time interval: an extremely time-consuming process. This study investigated how to approach the spectral average using only very few noise recordings for each wind speed, leveraging supervised and unsupervised machine learning techniques. Three different prediction methods, based on mean and interpolation, principal component analysis (PCA), and nonnegative matrix factorization, in combination with four techniques for coefficient estimation as the wind varies, are tested. Prediction based on principal component analysis, combined with Gaussian process regression, outperforms other methods in all three case studies considered. The latter, in addition to the problem described above, include the prediction of the noise spectrum: at wind speeds where no noise recordings are available, and using a few recordings acquired at another (nominally identical) wind turbine.
doi_str_mv 10.1109/JOE.2024.3415753
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10638433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638433</ieee_id><sourcerecordid>3117134869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-3caf78ad0c687232fa593863535746cace471e6216ad03c3c0eb7a96d48f0fb3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKt7Fy4Crqcmc_OYLKXWZ7GCFZchk8lIis3UJIP03zulXbi6cPjOufAhdEnJhFKibp4Xs0lJSjYBRrnkcIRGlPOqoELRYzQiIFihCFen6CylFSGUMalG6OUtusbb7MMX_giNi78mu4hfO58cft84m6PBd93ahyFvcL3Fnz40eNnH2geHp13I0dd99l1I5-ikNd_JXRzuGC3vZ8vpYzFfPDxNb-eFLanMBVjTyso0xIpKllC2hiuoBHDgkglrrGOSOlFSMTBgwRJXS6NEw6qWtDWM0fV-dhO7n96lrFddH8PwUQOlkgKrhBoosqds7FKKrtWb6NcmbjUlemdMD8b0zpg-GBsqV_uKd879wwVUDAD-ACC_Zyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117134869</pqid></control><display><type>article</type><title>Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions</title><source>IEEE Electronic Library (IEL)</source><creator>Trucco, Andrea</creator><creatorcontrib>Trucco, Andrea</creatorcontrib><description>The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limited time interval: an extremely time-consuming process. This study investigated how to approach the spectral average using only very few noise recordings for each wind speed, leveraging supervised and unsupervised machine learning techniques. Three different prediction methods, based on mean and interpolation, principal component analysis (PCA), and nonnegative matrix factorization, in combination with four techniques for coefficient estimation as the wind varies, are tested. Prediction based on principal component analysis, combined with Gaussian process regression, outperforms other methods in all three case studies considered. The latter, in addition to the problem described above, include the prediction of the noise spectrum: at wind speeds where no noise recordings are available, and using a few recordings acquired at another (nominally identical) wind turbine.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2024.3415753</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Gaussian process ; Machine learning ; Marine ecosystems ; Noise ; Noise prediction ; Noise spectra ; Offshore ; Offshore energy sources ; Offshore wind turbine ; Principal component analysis ; principal component analysis (PCA) ; Principal components analysis ; Recording ; spectral prediction ; supervised and unsupervised learning ; Supervised learning ; Turbine engines ; Turbines ; Underwater ; Underwater noise ; Unsupervised learning ; Vectors ; Wind farms ; Wind power ; Wind speed ; Wind turbines</subject><ispartof>IEEE journal of oceanic engineering, 2024-10, Vol.49 (4), p.1675-1694</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-3caf78ad0c687232fa593863535746cace471e6216ad03c3c0eb7a96d48f0fb3</cites><orcidid>0000-0003-1189-6191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638433$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids></links><search><creatorcontrib>Trucco, Andrea</creatorcontrib><title>Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limited time interval: an extremely time-consuming process. This study investigated how to approach the spectral average using only very few noise recordings for each wind speed, leveraging supervised and unsupervised machine learning techniques. Three different prediction methods, based on mean and interpolation, principal component analysis (PCA), and nonnegative matrix factorization, in combination with four techniques for coefficient estimation as the wind varies, are tested. Prediction based on principal component analysis, combined with Gaussian process regression, outperforms other methods in all three case studies considered. The latter, in addition to the problem described above, include the prediction of the noise spectrum: at wind speeds where no noise recordings are available, and using a few recordings acquired at another (nominally identical) wind turbine.</description><subject>Gaussian process</subject><subject>Machine learning</subject><subject>Marine ecosystems</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Noise spectra</subject><subject>Offshore</subject><subject>Offshore energy sources</subject><subject>Offshore wind turbine</subject><subject>Principal component analysis</subject><subject>principal component analysis (PCA)</subject><subject>Principal components analysis</subject><subject>Recording</subject><subject>spectral prediction</subject><subject>supervised and unsupervised learning</subject><subject>Supervised learning</subject><subject>Turbine engines</subject><subject>Turbines</subject><subject>Underwater</subject><subject>Underwater noise</subject><subject>Unsupervised learning</subject><subject>Vectors</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind speed</subject><subject>Wind turbines</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEtLAzEUhYMoWKt7Fy4Crqcmc_OYLKXWZ7GCFZchk8lIis3UJIP03zulXbi6cPjOufAhdEnJhFKibp4Xs0lJSjYBRrnkcIRGlPOqoELRYzQiIFihCFen6CylFSGUMalG6OUtusbb7MMX_giNi78mu4hfO58cft84m6PBd93ahyFvcL3Fnz40eNnH2geHp13I0dd99l1I5-ikNd_JXRzuGC3vZ8vpYzFfPDxNb-eFLanMBVjTyso0xIpKllC2hiuoBHDgkglrrGOSOlFSMTBgwRJXS6NEw6qWtDWM0fV-dhO7n96lrFddH8PwUQOlkgKrhBoosqds7FKKrtWb6NcmbjUlemdMD8b0zpg-GBsqV_uKd879wwVUDAD-ACC_Zyo</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Trucco, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1189-6191</orcidid></search><sort><creationdate>202410</creationdate><title>Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions</title><author>Trucco, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-3caf78ad0c687232fa593863535746cace471e6216ad03c3c0eb7a96d48f0fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gaussian process</topic><topic>Machine learning</topic><topic>Marine ecosystems</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Noise spectra</topic><topic>Offshore</topic><topic>Offshore energy sources</topic><topic>Offshore wind turbine</topic><topic>Principal component analysis</topic><topic>principal component analysis (PCA)</topic><topic>Principal components analysis</topic><topic>Recording</topic><topic>spectral prediction</topic><topic>supervised and unsupervised learning</topic><topic>Supervised learning</topic><topic>Turbine engines</topic><topic>Turbines</topic><topic>Underwater</topic><topic>Underwater noise</topic><topic>Unsupervised learning</topic><topic>Vectors</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind speed</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trucco, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trucco, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2024-10</date><risdate>2024</risdate><volume>49</volume><issue>4</issue><spage>1675</spage><epage>1694</epage><pages>1675-1694</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>The study of the impact on the marine ecosystem of an offshore wind farm benefits from the knowledge of the underwater noise observed at a single turbine, as the wind speed varies. The calculation of the noise spectral average at a given wind speed requires many recordings, each acquired in a limited time interval: an extremely time-consuming process. This study investigated how to approach the spectral average using only very few noise recordings for each wind speed, leveraging supervised and unsupervised machine learning techniques. Three different prediction methods, based on mean and interpolation, principal component analysis (PCA), and nonnegative matrix factorization, in combination with four techniques for coefficient estimation as the wind varies, are tested. Prediction based on principal component analysis, combined with Gaussian process regression, outperforms other methods in all three case studies considered. The latter, in addition to the problem described above, include the prediction of the noise spectrum: at wind speeds where no noise recordings are available, and using a few recordings acquired at another (nominally identical) wind turbine.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2024.3415753</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1189-6191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 2024-10, Vol.49 (4), p.1675-1694
issn 0364-9059
1558-1691
language eng
recordid cdi_ieee_primary_10638433
source IEEE Electronic Library (IEL)
subjects Gaussian process
Machine learning
Marine ecosystems
Noise
Noise prediction
Noise spectra
Offshore
Offshore energy sources
Offshore wind turbine
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Recording
spectral prediction
supervised and unsupervised learning
Supervised learning
Turbine engines
Turbines
Underwater
Underwater noise
Unsupervised learning
Vectors
Wind farms
Wind power
Wind speed
Wind turbines
title Predicting Underwater Noise Spectra Dominated by Wind Turbine Contributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Underwater%20Noise%20Spectra%20Dominated%20by%20Wind%20Turbine%20Contributions&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Trucco,%20Andrea&rft.date=2024-10&rft.volume=49&rft.issue=4&rft.spage=1675&rft.epage=1694&rft.pages=1675-1694&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2024.3415753&rft_dat=%3Cproquest_ieee_%3E3117134869%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117134869&rft_id=info:pmid/&rft_ieee_id=10638433&rfr_iscdi=true