Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles

Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of oceanic engineering 2024-10, Vol.49 (4), p.1371-1382
Hauptverfasser: Zhang, Yanwu, Kieft, Brian, Hobson, Brett W., Shemet, Quinn, Preston, Christina M., Wahl, Christopher, Pitz, Kathleen J., Benoit-Bird, Kelly J., Birch, James M., Chavez, Francisco P., Scholin, Christopher A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1382
container_issue 4
container_start_page 1371
container_title IEEE journal of oceanic engineering
container_volume 49
creator Zhang, Yanwu
Kieft, Brian
Hobson, Brett W.
Shemet, Quinn
Preston, Christina M.
Wahl, Christopher
Pitz, Kathleen J.
Benoit-Bird, Kelly J.
Birch, James M.
Chavez, Francisco P.
Scholin, Christopher A.
description Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature. Each LRAUV was equipped with a third-generation environmental sample processor (3G-ESP), a robotic instrument for acquiring and processing water samples for molecular analysis. Each 3G-ESP can collect and process 60 samples. For continuous and persistent eDNA sampling of vertically migrating organisms at a targeted depth layer, we deployed two LRAUVs which alternately triggered the ESP, extending the total time of collecting samples. We developed a method of coordinated sampling by time shift and a collaborative sampling method that uses acoustic handshakes. In the time-shift method, each vehicle switched between two behaviors: sample collection at the targeted depth and spiraling over a large depth range to make contextual measurement. The second vehicle's mission started later than the first vehicle's by a time shift equal to the duration of one sampling event, such that at a given time one vehicle sampled at the targeted depth while the other vehicle spiraled up and down. In the acoustic-handshake method, the two LRAUVs exchanged sample-start and sample-end messages. On receiving vehicle #1's sample-end message, vehicle #2 triggered a sampling event and transmitted a sample-start message to vehicle #1. Then, vehicle #1 waited for vehicle #2's sample-end message before triggering the next sampling event, and so forth. The time-shift method is simple, whereas the acoustic-handshake method is accurate and adaptive. Both methods were demonstrated in experiments in Monterey Bay.
doi_str_mv 10.1109/JOE.2024.3408889
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10638321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638321</ieee_id><sourcerecordid>3117134910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-4fce202c57bf9b8aa2766cecd14cd0d3c85d0fee0e08546b172e308ca23131643</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk7xi53EGauIT1WqBC2MlmO_lFSpXZyEqv-eVO3A9JZz7306hNwCmwCw_OFt_jiJWSwmXDApZX5GRpAkMoI0h3MyYjwVUc6S_JJcte2aMRAiy0fkq_A-2NrpDi3VztLCN40ufdBd_Yv0Q2-2Te1WtNzTxc7TmXer6F27FdJp33nnN75v6dJZDLuhItBP_K5Ng-01uah00-LN6Y7J8ulxUbxEs_nzazGdRSaGrItEZXD42iRZWeWl1DrO0tSgsSCMZZYbmVhWITJkMhFpCVmMnEmjYw4cUsHH5P7Yuw3-p8e2U2vfBzdMKg6QARc5sIFiR8oE37YBK7UN9UaHvQKmDvrUoE8d9KmTviFyd4zUiPgPT7nkMfA_l6lsAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117134910</pqid></control><display><type>article</type><title>Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles</title><source>IEEE Xplore</source><creator>Zhang, Yanwu ; Kieft, Brian ; Hobson, Brett W. ; Shemet, Quinn ; Preston, Christina M. ; Wahl, Christopher ; Pitz, Kathleen J. ; Benoit-Bird, Kelly J. ; Birch, James M. ; Chavez, Francisco P. ; Scholin, Christopher A.</creator><creatorcontrib>Zhang, Yanwu ; Kieft, Brian ; Hobson, Brett W. ; Shemet, Quinn ; Preston, Christina M. ; Wahl, Christopher ; Pitz, Kathleen J. ; Benoit-Bird, Kelly J. ; Birch, James M. ; Chavez, Francisco P. ; Scholin, Christopher A.</creatorcontrib><description>Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature. Each LRAUV was equipped with a third-generation environmental sample processor (3G-ESP), a robotic instrument for acquiring and processing water samples for molecular analysis. Each 3G-ESP can collect and process 60 samples. For continuous and persistent eDNA sampling of vertically migrating organisms at a targeted depth layer, we deployed two LRAUVs which alternately triggered the ESP, extending the total time of collecting samples. We developed a method of coordinated sampling by time shift and a collaborative sampling method that uses acoustic handshakes. In the time-shift method, each vehicle switched between two behaviors: sample collection at the targeted depth and spiraling over a large depth range to make contextual measurement. The second vehicle's mission started later than the first vehicle's by a time shift equal to the duration of one sampling event, such that at a given time one vehicle sampled at the targeted depth while the other vehicle spiraled up and down. In the acoustic-handshake method, the two LRAUVs exchanged sample-start and sample-end messages. On receiving vehicle #1's sample-end message, vehicle #2 triggered a sampling event and transmitted a sample-start message to vehicle #1. Then, vehicle #1 waited for vehicle #2's sample-end message before triggering the next sampling event, and so forth. The time-shift method is simple, whereas the acoustic-handshake method is accurate and adaptive. Both methods were demonstrated in experiments in Monterey Bay.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2024.3408889</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic handshake ; Acoustics ; Adaptive sampling ; Autonomous underwater vehicles ; Collaboration ; collaborative sampling ; coordinated sampling ; Depth ; Echo sounders ; Environmental DNA ; environmental DNA (eDNA) ; environmental sample processor (ESP) ; Instruments ; long-range autonomous underwater vehicle (LRAUV) ; Messages ; Microprocessors ; Sampling methods ; Sea measurements ; Switches ; Target tracking ; Underwater vehicles ; Vehicles ; Water analysis ; Water sampling</subject><ispartof>IEEE journal of oceanic engineering, 2024-10, Vol.49 (4), p.1371-1382</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-4fce202c57bf9b8aa2766cecd14cd0d3c85d0fee0e08546b172e308ca23131643</cites><orcidid>0000-0002-5868-0390 ; 0000-0002-0839-7626 ; 0000-0002-6175-8232 ; 0000-0002-8773-9275 ; 0000-0003-0373-1899 ; 0000-0002-0691-292X ; 0009-0006-6128-6630 ; 0000-0002-6080-8955 ; 0000-0002-4931-8592 ; 0000-0001-9675-068X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638321$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Zhang, Yanwu</creatorcontrib><creatorcontrib>Kieft, Brian</creatorcontrib><creatorcontrib>Hobson, Brett W.</creatorcontrib><creatorcontrib>Shemet, Quinn</creatorcontrib><creatorcontrib>Preston, Christina M.</creatorcontrib><creatorcontrib>Wahl, Christopher</creatorcontrib><creatorcontrib>Pitz, Kathleen J.</creatorcontrib><creatorcontrib>Benoit-Bird, Kelly J.</creatorcontrib><creatorcontrib>Birch, James M.</creatorcontrib><creatorcontrib>Chavez, Francisco P.</creatorcontrib><creatorcontrib>Scholin, Christopher A.</creatorcontrib><title>Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature. Each LRAUV was equipped with a third-generation environmental sample processor (3G-ESP), a robotic instrument for acquiring and processing water samples for molecular analysis. Each 3G-ESP can collect and process 60 samples. For continuous and persistent eDNA sampling of vertically migrating organisms at a targeted depth layer, we deployed two LRAUVs which alternately triggered the ESP, extending the total time of collecting samples. We developed a method of coordinated sampling by time shift and a collaborative sampling method that uses acoustic handshakes. In the time-shift method, each vehicle switched between two behaviors: sample collection at the targeted depth and spiraling over a large depth range to make contextual measurement. The second vehicle's mission started later than the first vehicle's by a time shift equal to the duration of one sampling event, such that at a given time one vehicle sampled at the targeted depth while the other vehicle spiraled up and down. In the acoustic-handshake method, the two LRAUVs exchanged sample-start and sample-end messages. On receiving vehicle #1's sample-end message, vehicle #2 triggered a sampling event and transmitted a sample-start message to vehicle #1. Then, vehicle #1 waited for vehicle #2's sample-end message before triggering the next sampling event, and so forth. The time-shift method is simple, whereas the acoustic-handshake method is accurate and adaptive. Both methods were demonstrated in experiments in Monterey Bay.</description><subject>Acoustic handshake</subject><subject>Acoustics</subject><subject>Adaptive sampling</subject><subject>Autonomous underwater vehicles</subject><subject>Collaboration</subject><subject>collaborative sampling</subject><subject>coordinated sampling</subject><subject>Depth</subject><subject>Echo sounders</subject><subject>Environmental DNA</subject><subject>environmental DNA (eDNA)</subject><subject>environmental sample processor (ESP)</subject><subject>Instruments</subject><subject>long-range autonomous underwater vehicle (LRAUV)</subject><subject>Messages</subject><subject>Microprocessors</subject><subject>Sampling methods</subject><subject>Sea measurements</subject><subject>Switches</subject><subject>Target tracking</subject><subject>Underwater vehicles</subject><subject>Vehicles</subject><subject>Water analysis</subject><subject>Water sampling</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk7xi53EGauIT1WqBC2MlmO_lFSpXZyEqv-eVO3A9JZz7306hNwCmwCw_OFt_jiJWSwmXDApZX5GRpAkMoI0h3MyYjwVUc6S_JJcte2aMRAiy0fkq_A-2NrpDi3VztLCN40ufdBd_Yv0Q2-2Te1WtNzTxc7TmXer6F27FdJp33nnN75v6dJZDLuhItBP_K5Ng-01uah00-LN6Y7J8ulxUbxEs_nzazGdRSaGrItEZXD42iRZWeWl1DrO0tSgsSCMZZYbmVhWITJkMhFpCVmMnEmjYw4cUsHH5P7Yuw3-p8e2U2vfBzdMKg6QARc5sIFiR8oE37YBK7UN9UaHvQKmDvrUoE8d9KmTviFyd4zUiPgPT7nkMfA_l6lsAQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhang, Yanwu</creator><creator>Kieft, Brian</creator><creator>Hobson, Brett W.</creator><creator>Shemet, Quinn</creator><creator>Preston, Christina M.</creator><creator>Wahl, Christopher</creator><creator>Pitz, Kathleen J.</creator><creator>Benoit-Bird, Kelly J.</creator><creator>Birch, James M.</creator><creator>Chavez, Francisco P.</creator><creator>Scholin, Christopher A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5868-0390</orcidid><orcidid>https://orcid.org/0000-0002-0839-7626</orcidid><orcidid>https://orcid.org/0000-0002-6175-8232</orcidid><orcidid>https://orcid.org/0000-0002-8773-9275</orcidid><orcidid>https://orcid.org/0000-0003-0373-1899</orcidid><orcidid>https://orcid.org/0000-0002-0691-292X</orcidid><orcidid>https://orcid.org/0009-0006-6128-6630</orcidid><orcidid>https://orcid.org/0000-0002-6080-8955</orcidid><orcidid>https://orcid.org/0000-0002-4931-8592</orcidid><orcidid>https://orcid.org/0000-0001-9675-068X</orcidid></search><sort><creationdate>202410</creationdate><title>Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles</title><author>Zhang, Yanwu ; Kieft, Brian ; Hobson, Brett W. ; Shemet, Quinn ; Preston, Christina M. ; Wahl, Christopher ; Pitz, Kathleen J. ; Benoit-Bird, Kelly J. ; Birch, James M. ; Chavez, Francisco P. ; Scholin, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-4fce202c57bf9b8aa2766cecd14cd0d3c85d0fee0e08546b172e308ca23131643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic handshake</topic><topic>Acoustics</topic><topic>Adaptive sampling</topic><topic>Autonomous underwater vehicles</topic><topic>Collaboration</topic><topic>collaborative sampling</topic><topic>coordinated sampling</topic><topic>Depth</topic><topic>Echo sounders</topic><topic>Environmental DNA</topic><topic>environmental DNA (eDNA)</topic><topic>environmental sample processor (ESP)</topic><topic>Instruments</topic><topic>long-range autonomous underwater vehicle (LRAUV)</topic><topic>Messages</topic><topic>Microprocessors</topic><topic>Sampling methods</topic><topic>Sea measurements</topic><topic>Switches</topic><topic>Target tracking</topic><topic>Underwater vehicles</topic><topic>Vehicles</topic><topic>Water analysis</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanwu</creatorcontrib><creatorcontrib>Kieft, Brian</creatorcontrib><creatorcontrib>Hobson, Brett W.</creatorcontrib><creatorcontrib>Shemet, Quinn</creatorcontrib><creatorcontrib>Preston, Christina M.</creatorcontrib><creatorcontrib>Wahl, Christopher</creatorcontrib><creatorcontrib>Pitz, Kathleen J.</creatorcontrib><creatorcontrib>Benoit-Bird, Kelly J.</creatorcontrib><creatorcontrib>Birch, James M.</creatorcontrib><creatorcontrib>Chavez, Francisco P.</creatorcontrib><creatorcontrib>Scholin, Christopher A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanwu</au><au>Kieft, Brian</au><au>Hobson, Brett W.</au><au>Shemet, Quinn</au><au>Preston, Christina M.</au><au>Wahl, Christopher</au><au>Pitz, Kathleen J.</au><au>Benoit-Bird, Kelly J.</au><au>Birch, James M.</au><au>Chavez, Francisco P.</au><au>Scholin, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2024-10</date><risdate>2024</risdate><volume>49</volume><issue>4</issue><spage>1371</spage><epage>1382</epage><pages>1371-1382</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature. Each LRAUV was equipped with a third-generation environmental sample processor (3G-ESP), a robotic instrument for acquiring and processing water samples for molecular analysis. Each 3G-ESP can collect and process 60 samples. For continuous and persistent eDNA sampling of vertically migrating organisms at a targeted depth layer, we deployed two LRAUVs which alternately triggered the ESP, extending the total time of collecting samples. We developed a method of coordinated sampling by time shift and a collaborative sampling method that uses acoustic handshakes. In the time-shift method, each vehicle switched between two behaviors: sample collection at the targeted depth and spiraling over a large depth range to make contextual measurement. The second vehicle's mission started later than the first vehicle's by a time shift equal to the duration of one sampling event, such that at a given time one vehicle sampled at the targeted depth while the other vehicle spiraled up and down. In the acoustic-handshake method, the two LRAUVs exchanged sample-start and sample-end messages. On receiving vehicle #1's sample-end message, vehicle #2 triggered a sampling event and transmitted a sample-start message to vehicle #1. Then, vehicle #1 waited for vehicle #2's sample-end message before triggering the next sampling event, and so forth. The time-shift method is simple, whereas the acoustic-handshake method is accurate and adaptive. Both methods were demonstrated in experiments in Monterey Bay.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2024.3408889</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5868-0390</orcidid><orcidid>https://orcid.org/0000-0002-0839-7626</orcidid><orcidid>https://orcid.org/0000-0002-6175-8232</orcidid><orcidid>https://orcid.org/0000-0002-8773-9275</orcidid><orcidid>https://orcid.org/0000-0003-0373-1899</orcidid><orcidid>https://orcid.org/0000-0002-0691-292X</orcidid><orcidid>https://orcid.org/0009-0006-6128-6630</orcidid><orcidid>https://orcid.org/0000-0002-6080-8955</orcidid><orcidid>https://orcid.org/0000-0002-4931-8592</orcidid><orcidid>https://orcid.org/0000-0001-9675-068X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9059
ispartof IEEE journal of oceanic engineering, 2024-10, Vol.49 (4), p.1371-1382
issn 0364-9059
1558-1691
language eng
recordid cdi_ieee_primary_10638321
source IEEE Xplore
subjects Acoustic handshake
Acoustics
Adaptive sampling
Autonomous underwater vehicles
Collaboration
collaborative sampling
coordinated sampling
Depth
Echo sounders
Environmental DNA
environmental DNA (eDNA)
environmental sample processor (ESP)
Instruments
long-range autonomous underwater vehicle (LRAUV)
Messages
Microprocessors
Sampling methods
Sea measurements
Switches
Target tracking
Underwater vehicles
Vehicles
Water analysis
Water sampling
title Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20and%20Collaborative%20Sampling%20by%20Two%20Long-Range%20Autonomous%20Underwater%20Vehicles&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Zhang,%20Yanwu&rft.date=2024-10&rft.volume=49&rft.issue=4&rft.spage=1371&rft.epage=1382&rft.pages=1371-1382&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2024.3408889&rft_dat=%3Cproquest_ieee_%3E3117134910%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117134910&rft_id=info:pmid/&rft_ieee_id=10638321&rfr_iscdi=true