Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles
Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature....
Gespeichert in:
Veröffentlicht in: | IEEE journal of oceanic engineering 2024-10, Vol.49 (4), p.1371-1382 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1382 |
---|---|
container_issue | 4 |
container_start_page | 1371 |
container_title | IEEE journal of oceanic engineering |
container_volume | 49 |
creator | Zhang, Yanwu Kieft, Brian Hobson, Brett W. Shemet, Quinn Preston, Christina M. Wahl, Christopher Pitz, Kathleen J. Benoit-Bird, Kelly J. Birch, James M. Chavez, Francisco P. Scholin, Christopher A. |
description | Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature. Each LRAUV was equipped with a third-generation environmental sample processor (3G-ESP), a robotic instrument for acquiring and processing water samples for molecular analysis. Each 3G-ESP can collect and process 60 samples. For continuous and persistent eDNA sampling of vertically migrating organisms at a targeted depth layer, we deployed two LRAUVs which alternately triggered the ESP, extending the total time of collecting samples. We developed a method of coordinated sampling by time shift and a collaborative sampling method that uses acoustic handshakes. In the time-shift method, each vehicle switched between two behaviors: sample collection at the targeted depth and spiraling over a large depth range to make contextual measurement. The second vehicle's mission started later than the first vehicle's by a time shift equal to the duration of one sampling event, such that at a given time one vehicle sampled at the targeted depth while the other vehicle spiraled up and down. In the acoustic-handshake method, the two LRAUVs exchanged sample-start and sample-end messages. On receiving vehicle #1's sample-end message, vehicle #2 triggered a sampling event and transmitted a sample-start message to vehicle #1. Then, vehicle #1 waited for vehicle #2's sample-end message before triggering the next sampling event, and so forth. The time-shift method is simple, whereas the acoustic-handshake method is accurate and adaptive. Both methods were demonstrated in experiments in Monterey Bay. |
doi_str_mv | 10.1109/JOE.2024.3408889 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10638321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638321</ieee_id><sourcerecordid>3117134910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-4fce202c57bf9b8aa2766cecd14cd0d3c85d0fee0e08546b172e308ca23131643</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBYYk7xi53EGauIT1WqBC2MlmO_lFSpXZyEqv-eVO3A9JZz7306hNwCmwCw_OFt_jiJWSwmXDApZX5GRpAkMoI0h3MyYjwVUc6S_JJcte2aMRAiy0fkq_A-2NrpDi3VztLCN40ufdBd_Yv0Q2-2Te1WtNzTxc7TmXer6F27FdJp33nnN75v6dJZDLuhItBP_K5Ng-01uah00-LN6Y7J8ulxUbxEs_nzazGdRSaGrItEZXD42iRZWeWl1DrO0tSgsSCMZZYbmVhWITJkMhFpCVmMnEmjYw4cUsHH5P7Yuw3-p8e2U2vfBzdMKg6QARc5sIFiR8oE37YBK7UN9UaHvQKmDvrUoE8d9KmTviFyd4zUiPgPT7nkMfA_l6lsAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117134910</pqid></control><display><type>article</type><title>Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles</title><source>IEEE Xplore</source><creator>Zhang, Yanwu ; Kieft, Brian ; Hobson, Brett W. ; Shemet, Quinn ; Preston, Christina M. ; Wahl, Christopher ; Pitz, Kathleen J. ; Benoit-Bird, Kelly J. ; Birch, James M. ; Chavez, Francisco P. ; Scholin, Christopher A.</creator><creatorcontrib>Zhang, Yanwu ; Kieft, Brian ; Hobson, Brett W. ; Shemet, Quinn ; Preston, Christina M. ; Wahl, Christopher ; Pitz, Kathleen J. ; Benoit-Bird, Kelly J. ; Birch, James M. ; Chavez, Francisco P. ; Scholin, Christopher A.</creatorcontrib><description>Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature. Each LRAUV was equipped with a third-generation environmental sample processor (3G-ESP), a robotic instrument for acquiring and processing water samples for molecular analysis. Each 3G-ESP can collect and process 60 samples. For continuous and persistent eDNA sampling of vertically migrating organisms at a targeted depth layer, we deployed two LRAUVs which alternately triggered the ESP, extending the total time of collecting samples. We developed a method of coordinated sampling by time shift and a collaborative sampling method that uses acoustic handshakes. In the time-shift method, each vehicle switched between two behaviors: sample collection at the targeted depth and spiraling over a large depth range to make contextual measurement. The second vehicle's mission started later than the first vehicle's by a time shift equal to the duration of one sampling event, such that at a given time one vehicle sampled at the targeted depth while the other vehicle spiraled up and down. In the acoustic-handshake method, the two LRAUVs exchanged sample-start and sample-end messages. On receiving vehicle #1's sample-end message, vehicle #2 triggered a sampling event and transmitted a sample-start message to vehicle #1. Then, vehicle #1 waited for vehicle #2's sample-end message before triggering the next sampling event, and so forth. The time-shift method is simple, whereas the acoustic-handshake method is accurate and adaptive. Both methods were demonstrated in experiments in Monterey Bay.</description><identifier>ISSN: 0364-9059</identifier><identifier>EISSN: 1558-1691</identifier><identifier>DOI: 10.1109/JOE.2024.3408889</identifier><identifier>CODEN: IJOEDY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic handshake ; Acoustics ; Adaptive sampling ; Autonomous underwater vehicles ; Collaboration ; collaborative sampling ; coordinated sampling ; Depth ; Echo sounders ; Environmental DNA ; environmental DNA (eDNA) ; environmental sample processor (ESP) ; Instruments ; long-range autonomous underwater vehicle (LRAUV) ; Messages ; Microprocessors ; Sampling methods ; Sea measurements ; Switches ; Target tracking ; Underwater vehicles ; Vehicles ; Water analysis ; Water sampling</subject><ispartof>IEEE journal of oceanic engineering, 2024-10, Vol.49 (4), p.1371-1382</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-4fce202c57bf9b8aa2766cecd14cd0d3c85d0fee0e08546b172e308ca23131643</cites><orcidid>0000-0002-5868-0390 ; 0000-0002-0839-7626 ; 0000-0002-6175-8232 ; 0000-0002-8773-9275 ; 0000-0003-0373-1899 ; 0000-0002-0691-292X ; 0009-0006-6128-6630 ; 0000-0002-6080-8955 ; 0000-0002-4931-8592 ; 0000-0001-9675-068X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638321$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Zhang, Yanwu</creatorcontrib><creatorcontrib>Kieft, Brian</creatorcontrib><creatorcontrib>Hobson, Brett W.</creatorcontrib><creatorcontrib>Shemet, Quinn</creatorcontrib><creatorcontrib>Preston, Christina M.</creatorcontrib><creatorcontrib>Wahl, Christopher</creatorcontrib><creatorcontrib>Pitz, Kathleen J.</creatorcontrib><creatorcontrib>Benoit-Bird, Kelly J.</creatorcontrib><creatorcontrib>Birch, James M.</creatorcontrib><creatorcontrib>Chavez, Francisco P.</creatorcontrib><creatorcontrib>Scholin, Christopher A.</creatorcontrib><title>Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles</title><title>IEEE journal of oceanic engineering</title><addtitle>JOE</addtitle><description>Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature. Each LRAUV was equipped with a third-generation environmental sample processor (3G-ESP), a robotic instrument for acquiring and processing water samples for molecular analysis. Each 3G-ESP can collect and process 60 samples. For continuous and persistent eDNA sampling of vertically migrating organisms at a targeted depth layer, we deployed two LRAUVs which alternately triggered the ESP, extending the total time of collecting samples. We developed a method of coordinated sampling by time shift and a collaborative sampling method that uses acoustic handshakes. In the time-shift method, each vehicle switched between two behaviors: sample collection at the targeted depth and spiraling over a large depth range to make contextual measurement. The second vehicle's mission started later than the first vehicle's by a time shift equal to the duration of one sampling event, such that at a given time one vehicle sampled at the targeted depth while the other vehicle spiraled up and down. In the acoustic-handshake method, the two LRAUVs exchanged sample-start and sample-end messages. On receiving vehicle #1's sample-end message, vehicle #2 triggered a sampling event and transmitted a sample-start message to vehicle #1. Then, vehicle #1 waited for vehicle #2's sample-end message before triggering the next sampling event, and so forth. The time-shift method is simple, whereas the acoustic-handshake method is accurate and adaptive. Both methods were demonstrated in experiments in Monterey Bay.</description><subject>Acoustic handshake</subject><subject>Acoustics</subject><subject>Adaptive sampling</subject><subject>Autonomous underwater vehicles</subject><subject>Collaboration</subject><subject>collaborative sampling</subject><subject>coordinated sampling</subject><subject>Depth</subject><subject>Echo sounders</subject><subject>Environmental DNA</subject><subject>environmental DNA (eDNA)</subject><subject>environmental sample processor (ESP)</subject><subject>Instruments</subject><subject>long-range autonomous underwater vehicle (LRAUV)</subject><subject>Messages</subject><subject>Microprocessors</subject><subject>Sampling methods</subject><subject>Sea measurements</subject><subject>Switches</subject><subject>Target tracking</subject><subject>Underwater vehicles</subject><subject>Vehicles</subject><subject>Water analysis</subject><subject>Water sampling</subject><issn>0364-9059</issn><issn>1558-1691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzBYYk7xi53EGauIT1WqBC2MlmO_lFSpXZyEqv-eVO3A9JZz7306hNwCmwCw_OFt_jiJWSwmXDApZX5GRpAkMoI0h3MyYjwVUc6S_JJcte2aMRAiy0fkq_A-2NrpDi3VztLCN40ufdBd_Yv0Q2-2Te1WtNzTxc7TmXer6F27FdJp33nnN75v6dJZDLuhItBP_K5Ng-01uah00-LN6Y7J8ulxUbxEs_nzazGdRSaGrItEZXD42iRZWeWl1DrO0tSgsSCMZZYbmVhWITJkMhFpCVmMnEmjYw4cUsHH5P7Yuw3-p8e2U2vfBzdMKg6QARc5sIFiR8oE37YBK7UN9UaHvQKmDvrUoE8d9KmTviFyd4zUiPgPT7nkMfA_l6lsAQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Zhang, Yanwu</creator><creator>Kieft, Brian</creator><creator>Hobson, Brett W.</creator><creator>Shemet, Quinn</creator><creator>Preston, Christina M.</creator><creator>Wahl, Christopher</creator><creator>Pitz, Kathleen J.</creator><creator>Benoit-Bird, Kelly J.</creator><creator>Birch, James M.</creator><creator>Chavez, Francisco P.</creator><creator>Scholin, Christopher A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5868-0390</orcidid><orcidid>https://orcid.org/0000-0002-0839-7626</orcidid><orcidid>https://orcid.org/0000-0002-6175-8232</orcidid><orcidid>https://orcid.org/0000-0002-8773-9275</orcidid><orcidid>https://orcid.org/0000-0003-0373-1899</orcidid><orcidid>https://orcid.org/0000-0002-0691-292X</orcidid><orcidid>https://orcid.org/0009-0006-6128-6630</orcidid><orcidid>https://orcid.org/0000-0002-6080-8955</orcidid><orcidid>https://orcid.org/0000-0002-4931-8592</orcidid><orcidid>https://orcid.org/0000-0001-9675-068X</orcidid></search><sort><creationdate>202410</creationdate><title>Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles</title><author>Zhang, Yanwu ; Kieft, Brian ; Hobson, Brett W. ; Shemet, Quinn ; Preston, Christina M. ; Wahl, Christopher ; Pitz, Kathleen J. ; Benoit-Bird, Kelly J. ; Birch, James M. ; Chavez, Francisco P. ; Scholin, Christopher A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-4fce202c57bf9b8aa2766cecd14cd0d3c85d0fee0e08546b172e308ca23131643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic handshake</topic><topic>Acoustics</topic><topic>Adaptive sampling</topic><topic>Autonomous underwater vehicles</topic><topic>Collaboration</topic><topic>collaborative sampling</topic><topic>coordinated sampling</topic><topic>Depth</topic><topic>Echo sounders</topic><topic>Environmental DNA</topic><topic>environmental DNA (eDNA)</topic><topic>environmental sample processor (ESP)</topic><topic>Instruments</topic><topic>long-range autonomous underwater vehicle (LRAUV)</topic><topic>Messages</topic><topic>Microprocessors</topic><topic>Sampling methods</topic><topic>Sea measurements</topic><topic>Switches</topic><topic>Target tracking</topic><topic>Underwater vehicles</topic><topic>Vehicles</topic><topic>Water analysis</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yanwu</creatorcontrib><creatorcontrib>Kieft, Brian</creatorcontrib><creatorcontrib>Hobson, Brett W.</creatorcontrib><creatorcontrib>Shemet, Quinn</creatorcontrib><creatorcontrib>Preston, Christina M.</creatorcontrib><creatorcontrib>Wahl, Christopher</creatorcontrib><creatorcontrib>Pitz, Kathleen J.</creatorcontrib><creatorcontrib>Benoit-Bird, Kelly J.</creatorcontrib><creatorcontrib>Birch, James M.</creatorcontrib><creatorcontrib>Chavez, Francisco P.</creatorcontrib><creatorcontrib>Scholin, Christopher A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal of oceanic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yanwu</au><au>Kieft, Brian</au><au>Hobson, Brett W.</au><au>Shemet, Quinn</au><au>Preston, Christina M.</au><au>Wahl, Christopher</au><au>Pitz, Kathleen J.</au><au>Benoit-Bird, Kelly J.</au><au>Birch, James M.</au><au>Chavez, Francisco P.</au><au>Scholin, Christopher A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles</atitle><jtitle>IEEE journal of oceanic engineering</jtitle><stitle>JOE</stitle><date>2024-10</date><risdate>2024</risdate><volume>49</volume><issue>4</issue><spage>1371</spage><epage>1382</epage><pages>1371-1382</pages><issn>0364-9059</issn><eissn>1558-1691</eissn><coden>IJOEDY</coden><abstract>Multiple autonomous underwater vehicles (AUVs) working in collaboration can achieve scientific goals more effectively than independently operated vehicles. In this article, we present a case of using two long-range AUVs (LRAUVs) for persistent environmental DNA (eDNA) sampling of a targeted feature. Each LRAUV was equipped with a third-generation environmental sample processor (3G-ESP), a robotic instrument for acquiring and processing water samples for molecular analysis. Each 3G-ESP can collect and process 60 samples. For continuous and persistent eDNA sampling of vertically migrating organisms at a targeted depth layer, we deployed two LRAUVs which alternately triggered the ESP, extending the total time of collecting samples. We developed a method of coordinated sampling by time shift and a collaborative sampling method that uses acoustic handshakes. In the time-shift method, each vehicle switched between two behaviors: sample collection at the targeted depth and spiraling over a large depth range to make contextual measurement. The second vehicle's mission started later than the first vehicle's by a time shift equal to the duration of one sampling event, such that at a given time one vehicle sampled at the targeted depth while the other vehicle spiraled up and down. In the acoustic-handshake method, the two LRAUVs exchanged sample-start and sample-end messages. On receiving vehicle #1's sample-end message, vehicle #2 triggered a sampling event and transmitted a sample-start message to vehicle #1. Then, vehicle #1 waited for vehicle #2's sample-end message before triggering the next sampling event, and so forth. The time-shift method is simple, whereas the acoustic-handshake method is accurate and adaptive. Both methods were demonstrated in experiments in Monterey Bay.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JOE.2024.3408889</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5868-0390</orcidid><orcidid>https://orcid.org/0000-0002-0839-7626</orcidid><orcidid>https://orcid.org/0000-0002-6175-8232</orcidid><orcidid>https://orcid.org/0000-0002-8773-9275</orcidid><orcidid>https://orcid.org/0000-0003-0373-1899</orcidid><orcidid>https://orcid.org/0000-0002-0691-292X</orcidid><orcidid>https://orcid.org/0009-0006-6128-6630</orcidid><orcidid>https://orcid.org/0000-0002-6080-8955</orcidid><orcidid>https://orcid.org/0000-0002-4931-8592</orcidid><orcidid>https://orcid.org/0000-0001-9675-068X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9059 |
ispartof | IEEE journal of oceanic engineering, 2024-10, Vol.49 (4), p.1371-1382 |
issn | 0364-9059 1558-1691 |
language | eng |
recordid | cdi_ieee_primary_10638321 |
source | IEEE Xplore |
subjects | Acoustic handshake Acoustics Adaptive sampling Autonomous underwater vehicles Collaboration collaborative sampling coordinated sampling Depth Echo sounders Environmental DNA environmental DNA (eDNA) environmental sample processor (ESP) Instruments long-range autonomous underwater vehicle (LRAUV) Messages Microprocessors Sampling methods Sea measurements Switches Target tracking Underwater vehicles Vehicles Water analysis Water sampling |
title | Coordinated and Collaborative Sampling by Two Long-Range Autonomous Underwater Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinated%20and%20Collaborative%20Sampling%20by%20Two%20Long-Range%20Autonomous%20Underwater%20Vehicles&rft.jtitle=IEEE%20journal%20of%20oceanic%20engineering&rft.au=Zhang,%20Yanwu&rft.date=2024-10&rft.volume=49&rft.issue=4&rft.spage=1371&rft.epage=1382&rft.pages=1371-1382&rft.issn=0364-9059&rft.eissn=1558-1691&rft.coden=IJOEDY&rft_id=info:doi/10.1109/JOE.2024.3408889&rft_dat=%3Cproquest_ieee_%3E3117134910%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117134910&rft_id=info:pmid/&rft_ieee_id=10638321&rfr_iscdi=true |