Control Co-Design of Hydrokinetic Turbines Considering Dynamic-Hydrodynamic Coupling

Hydrokinetic turbine (HKT) controllers are traditionally optimized after determining physical turbine variables. However, simultaneously varying controls and turbine shape by considering the interactions between the control space and the turbine shape can significantly enhance the system performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2025-01, Vol.33 (1), p.48-60
Hauptverfasser: Jiang, Boxi, Reza Amini, Mohammad, Liao, Yingqian, Naik, Kartik, Martins, Joaquim R. R. A., Sun, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 48
container_title IEEE transactions on control systems technology
container_volume 33
creator Jiang, Boxi
Reza Amini, Mohammad
Liao, Yingqian
Naik, Kartik
Martins, Joaquim R. R. A.
Sun, Jing
description Hydrokinetic turbine (HKT) controllers are traditionally optimized after determining physical turbine variables. However, simultaneously varying controls and turbine shape by considering the interactions between the control space and the turbine shape can significantly enhance the system performance in contrast to the conventional sequential design approach. This article delves into this prospect by introducing a control co-design (CCD) framework tailored for this simultaneous optimization for a variable-speed HKT rotor. The proposed CCD framework integrates a dynamic-hydrodynamic model that captures the intricate interplay between hydrodynamic performance and control strategies for the HKT under time-varying flow profiles. We systematically investigate cases with diverse control constraints in a time-varying flow environment to explore the coupling between the control space and the physical system. We demonstrate the advantages of the CCD framework over the conventional sequential design methodology through comparative study cases. CCD optimization considering a single flow condition leads to an overly specialized design that underperforms at other off-design conditions. The stochastic nature of the flow thereby highlights the need to account for a broader range of flow speeds in the HKT design process. To address this challenge, we introduce a multipoint CCD optimization that accounts for the annual flow probability distribution. The multipoint CCD approach demonstrates higher annual energy extraction compared to optimizations based on a single flow condition.
doi_str_mv 10.1109/TCST.2024.3440249
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10638132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10638132</ieee_id><sourcerecordid>10_1109_TCST_2024_3440249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-4106b472b1d154e4b281d22a869e3ed44405498eb3e6c017ca98915c98290df13</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EEqVwACQWuYCLx3-1lyiFFqkSC8I6SuxJZWiTyk4XvT0u7YLVvNG8N5r5CHkENgNg9rkqP6sZZ1zOhJS52CsyAaUMZUar66yZFlQroW_JXUrfjIFUfD4hVTn0Yxy2RTnQBaaw6YuhK1ZHH4ef0OMYXFEdYptlypY-BY8x9JticeybXXD0z-nPTTYc9ts8vSc3XbNN-HCpU_L19lqVK7r-WL6XL2vqQJqRynxUK-e8BQ9Komy5Ac95Y7RFgV7mR5S0BluB2jGYu8YaC8pZwy3zHYgpgfNeF4eUInb1PoZdE481sPqEpT5hqU9Y6guWnHk6ZwIi_vNrYUBw8QsMWV7O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Control Co-Design of Hydrokinetic Turbines Considering Dynamic-Hydrodynamic Coupling</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Boxi ; Reza Amini, Mohammad ; Liao, Yingqian ; Naik, Kartik ; Martins, Joaquim R. R. A. ; Sun, Jing</creator><creatorcontrib>Jiang, Boxi ; Reza Amini, Mohammad ; Liao, Yingqian ; Naik, Kartik ; Martins, Joaquim R. R. A. ; Sun, Jing</creatorcontrib><description>Hydrokinetic turbine (HKT) controllers are traditionally optimized after determining physical turbine variables. However, simultaneously varying controls and turbine shape by considering the interactions between the control space and the turbine shape can significantly enhance the system performance in contrast to the conventional sequential design approach. This article delves into this prospect by introducing a control co-design (CCD) framework tailored for this simultaneous optimization for a variable-speed HKT rotor. The proposed CCD framework integrates a dynamic-hydrodynamic model that captures the intricate interplay between hydrodynamic performance and control strategies for the HKT under time-varying flow profiles. We systematically investigate cases with diverse control constraints in a time-varying flow environment to explore the coupling between the control space and the physical system. We demonstrate the advantages of the CCD framework over the conventional sequential design methodology through comparative study cases. CCD optimization considering a single flow condition leads to an overly specialized design that underperforms at other off-design conditions. The stochastic nature of the flow thereby highlights the need to account for a broader range of flow speeds in the HKT design process. To address this challenge, we introduce a multipoint CCD optimization that accounts for the annual flow probability distribution. The multipoint CCD approach demonstrates higher annual energy extraction compared to optimizations based on a single flow condition.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2024.3440249</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Blades ; Charge coupled devices ; Co-design ; control co-design (CCD) ; Hydrodynamics ; hydrokinetic turbines (HKTs) ; Physical design ; Production ; Rotors ; Turbines ; water current energy</subject><ispartof>IEEE transactions on control systems technology, 2025-01, Vol.33 (1), p.48-60</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-4106b472b1d154e4b281d22a869e3ed44405498eb3e6c017ca98915c98290df13</cites><orcidid>0000-0002-9656-7487 ; 0000-0001-6904-8844 ; 0000-0003-2143-1478 ; 0009-0001-4071-8223 ; 0000-0002-1223-8986 ; 0000-0002-1771-7134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10638132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10638132$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Boxi</creatorcontrib><creatorcontrib>Reza Amini, Mohammad</creatorcontrib><creatorcontrib>Liao, Yingqian</creatorcontrib><creatorcontrib>Naik, Kartik</creatorcontrib><creatorcontrib>Martins, Joaquim R. R. A.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><title>Control Co-Design of Hydrokinetic Turbines Considering Dynamic-Hydrodynamic Coupling</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Hydrokinetic turbine (HKT) controllers are traditionally optimized after determining physical turbine variables. However, simultaneously varying controls and turbine shape by considering the interactions between the control space and the turbine shape can significantly enhance the system performance in contrast to the conventional sequential design approach. This article delves into this prospect by introducing a control co-design (CCD) framework tailored for this simultaneous optimization for a variable-speed HKT rotor. The proposed CCD framework integrates a dynamic-hydrodynamic model that captures the intricate interplay between hydrodynamic performance and control strategies for the HKT under time-varying flow profiles. We systematically investigate cases with diverse control constraints in a time-varying flow environment to explore the coupling between the control space and the physical system. We demonstrate the advantages of the CCD framework over the conventional sequential design methodology through comparative study cases. CCD optimization considering a single flow condition leads to an overly specialized design that underperforms at other off-design conditions. The stochastic nature of the flow thereby highlights the need to account for a broader range of flow speeds in the HKT design process. To address this challenge, we introduce a multipoint CCD optimization that accounts for the annual flow probability distribution. The multipoint CCD approach demonstrates higher annual energy extraction compared to optimizations based on a single flow condition.</description><subject>Blades</subject><subject>Charge coupled devices</subject><subject>Co-design</subject><subject>control co-design (CCD)</subject><subject>Hydrodynamics</subject><subject>hydrokinetic turbines (HKTs)</subject><subject>Physical design</subject><subject>Production</subject><subject>Rotors</subject><subject>Turbines</subject><subject>water current energy</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1OwzAQhS0EEqVwACQWuYCLx3-1lyiFFqkSC8I6SuxJZWiTyk4XvT0u7YLVvNG8N5r5CHkENgNg9rkqP6sZZ1zOhJS52CsyAaUMZUar66yZFlQroW_JXUrfjIFUfD4hVTn0Yxy2RTnQBaaw6YuhK1ZHH4ef0OMYXFEdYptlypY-BY8x9JticeybXXD0z-nPTTYc9ts8vSc3XbNN-HCpU_L19lqVK7r-WL6XL2vqQJqRynxUK-e8BQ9Komy5Ac95Y7RFgV7mR5S0BluB2jGYu8YaC8pZwy3zHYgpgfNeF4eUInb1PoZdE481sPqEpT5hqU9Y6guWnHk6ZwIi_vNrYUBw8QsMWV7O</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Jiang, Boxi</creator><creator>Reza Amini, Mohammad</creator><creator>Liao, Yingqian</creator><creator>Naik, Kartik</creator><creator>Martins, Joaquim R. R. A.</creator><creator>Sun, Jing</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9656-7487</orcidid><orcidid>https://orcid.org/0000-0001-6904-8844</orcidid><orcidid>https://orcid.org/0000-0003-2143-1478</orcidid><orcidid>https://orcid.org/0009-0001-4071-8223</orcidid><orcidid>https://orcid.org/0000-0002-1223-8986</orcidid><orcidid>https://orcid.org/0000-0002-1771-7134</orcidid></search><sort><creationdate>202501</creationdate><title>Control Co-Design of Hydrokinetic Turbines Considering Dynamic-Hydrodynamic Coupling</title><author>Jiang, Boxi ; Reza Amini, Mohammad ; Liao, Yingqian ; Naik, Kartik ; Martins, Joaquim R. R. A. ; Sun, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-4106b472b1d154e4b281d22a869e3ed44405498eb3e6c017ca98915c98290df13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Blades</topic><topic>Charge coupled devices</topic><topic>Co-design</topic><topic>control co-design (CCD)</topic><topic>Hydrodynamics</topic><topic>hydrokinetic turbines (HKTs)</topic><topic>Physical design</topic><topic>Production</topic><topic>Rotors</topic><topic>Turbines</topic><topic>water current energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Boxi</creatorcontrib><creatorcontrib>Reza Amini, Mohammad</creatorcontrib><creatorcontrib>Liao, Yingqian</creatorcontrib><creatorcontrib>Naik, Kartik</creatorcontrib><creatorcontrib>Martins, Joaquim R. R. A.</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Boxi</au><au>Reza Amini, Mohammad</au><au>Liao, Yingqian</au><au>Naik, Kartik</au><au>Martins, Joaquim R. R. A.</au><au>Sun, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control Co-Design of Hydrokinetic Turbines Considering Dynamic-Hydrodynamic Coupling</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2025-01</date><risdate>2025</risdate><volume>33</volume><issue>1</issue><spage>48</spage><epage>60</epage><pages>48-60</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Hydrokinetic turbine (HKT) controllers are traditionally optimized after determining physical turbine variables. However, simultaneously varying controls and turbine shape by considering the interactions between the control space and the turbine shape can significantly enhance the system performance in contrast to the conventional sequential design approach. This article delves into this prospect by introducing a control co-design (CCD) framework tailored for this simultaneous optimization for a variable-speed HKT rotor. The proposed CCD framework integrates a dynamic-hydrodynamic model that captures the intricate interplay between hydrodynamic performance and control strategies for the HKT under time-varying flow profiles. We systematically investigate cases with diverse control constraints in a time-varying flow environment to explore the coupling between the control space and the physical system. We demonstrate the advantages of the CCD framework over the conventional sequential design methodology through comparative study cases. CCD optimization considering a single flow condition leads to an overly specialized design that underperforms at other off-design conditions. The stochastic nature of the flow thereby highlights the need to account for a broader range of flow speeds in the HKT design process. To address this challenge, we introduce a multipoint CCD optimization that accounts for the annual flow probability distribution. The multipoint CCD approach demonstrates higher annual energy extraction compared to optimizations based on a single flow condition.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2024.3440249</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9656-7487</orcidid><orcidid>https://orcid.org/0000-0001-6904-8844</orcidid><orcidid>https://orcid.org/0000-0003-2143-1478</orcidid><orcidid>https://orcid.org/0009-0001-4071-8223</orcidid><orcidid>https://orcid.org/0000-0002-1223-8986</orcidid><orcidid>https://orcid.org/0000-0002-1771-7134</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2025-01, Vol.33 (1), p.48-60
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_10638132
source IEEE Electronic Library (IEL)
subjects Blades
Charge coupled devices
Co-design
control co-design (CCD)
Hydrodynamics
hydrokinetic turbines (HKTs)
Physical design
Production
Rotors
Turbines
water current energy
title Control Co-Design of Hydrokinetic Turbines Considering Dynamic-Hydrodynamic Coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20Co-Design%20of%20Hydrokinetic%20Turbines%20Considering%20Dynamic-Hydrodynamic%20Coupling&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Jiang,%20Boxi&rft.date=2025-01&rft.volume=33&rft.issue=1&rft.spage=48&rft.epage=60&rft.pages=48-60&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2024.3440249&rft_dat=%3Ccrossref_RIE%3E10_1109_TCST_2024_3440249%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10638132&rfr_iscdi=true