A Lithium-ion Battery State-of-Health Prediction Model Combining Convolutional Neural Network and Masked Multi-Head Attention Mechanism

The existing data-driven methods for the state of health (SOH) prediction of lithium-ion battery are limited by the data quantity, resulting in insufficient generalization performance, prediction accuracy and prediction stability. To tackle this challenge, this paper proposes a novel model, namely t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2024-08, p.1-14
Hauptverfasser: Xiao, Haipeng, Fu, Lijun, Shang, Chengya, Fan, Yaxiang, Bao, Xianqiang, Xu, Xinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on energy conversion
container_volume
creator Xiao, Haipeng
Fu, Lijun
Shang, Chengya
Fan, Yaxiang
Bao, Xianqiang
Xu, Xinghua
description The existing data-driven methods for the state of health (SOH) prediction of lithium-ion battery are limited by the data quantity, resulting in insufficient generalization performance, prediction accuracy and prediction stability. To tackle this challenge, this paper proposes a novel model, namely the CNN-MMHA, for SOH prediction. The CNN-MMHA incorporates mask mechanisms and multi-head attention mechanisms (MHA) to effectively capture the interdependencies within time series data (i.e. MMHA). Simultaneously, the utilization of the data conversion module and convolutional neural network (CNN) enables the capture of temporal sequences and local characteristics of battery states, accordingly enhancing the predictive ability of MMHA. In this study, This paper execute a sequence of simulation experiments on NASA and CALCE data sets, where this paper compare the performance of a variety of models: Multilayer Perceptron (MLP), Long Short-Term Memory Network (LSTM), CNN, CNN-LSTM, MMHA, and CNN-MMHA respectively. The results demonstrate that the proposed model yields optimal convergence and generalization performance. Furthermore, it has the utmost prediction accuracy and stability. Ultimately, the exceptional performance and real-world applicability of the proposed model are corroborated through its experiments on the real battery.
doi_str_mv 10.1109/TEC.2024.3443629
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10637765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10637765</ieee_id><sourcerecordid>10637765</sourcerecordid><originalsourceid>FETCH-ieee_primary_106377653</originalsourceid><addsrcrecordid>eNqFjb1OwzAUhT2ARPnZGRjuCzjY-WsylqioA0VIdK9Mc0sudWxk34D6BLw2CbAzfUc6R98R4lqrRGtV326WTZKqNE-yPM_KtD4RM1VVhazqsj4T5zG-KaXzItUz8bWAB-KOhl6Sd3BnmDEc4ZkNo_R7uUJjuYOngC3teJqsfYsWGt-_kCP3Oib34e0wdcbCIw7hB_zpwwGMa2Ft4gFHDJZp8rWwGE_crwx3nXEU-0txujc24tUfL8TN_XLTrCQh4vY9UG_CcatVmc3nZZH9U38DGYpR6A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Lithium-ion Battery State-of-Health Prediction Model Combining Convolutional Neural Network and Masked Multi-Head Attention Mechanism</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Haipeng ; Fu, Lijun ; Shang, Chengya ; Fan, Yaxiang ; Bao, Xianqiang ; Xu, Xinghua</creator><creatorcontrib>Xiao, Haipeng ; Fu, Lijun ; Shang, Chengya ; Fan, Yaxiang ; Bao, Xianqiang ; Xu, Xinghua</creatorcontrib><description>The existing data-driven methods for the state of health (SOH) prediction of lithium-ion battery are limited by the data quantity, resulting in insufficient generalization performance, prediction accuracy and prediction stability. To tackle this challenge, this paper proposes a novel model, namely the CNN-MMHA, for SOH prediction. The CNN-MMHA incorporates mask mechanisms and multi-head attention mechanisms (MHA) to effectively capture the interdependencies within time series data (i.e. MMHA). Simultaneously, the utilization of the data conversion module and convolutional neural network (CNN) enables the capture of temporal sequences and local characteristics of battery states, accordingly enhancing the predictive ability of MMHA. In this study, This paper execute a sequence of simulation experiments on NASA and CALCE data sets, where this paper compare the performance of a variety of models: Multilayer Perceptron (MLP), Long Short-Term Memory Network (LSTM), CNN, CNN-LSTM, MMHA, and CNN-MMHA respectively. The results demonstrate that the proposed model yields optimal convergence and generalization performance. Furthermore, it has the utmost prediction accuracy and stability. Ultimately, the exceptional performance and real-world applicability of the proposed model are corroborated through its experiments on the real battery.</description><identifier>ISSN: 0885-8969</identifier><identifier>DOI: 10.1109/TEC.2024.3443629</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; CNN ; CNN-MMHA ; Convolutional neural networks ; Data models ; Data-driven methods ; Lithium-ion batteries ; Lithium-ion battery ; Long short term memory ; Mask mechanisms ; Multi-head attention ; Predictive models ; SOH ; Time series analysis</subject><ispartof>IEEE transactions on energy conversion, 2024-08, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10637765$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10637765$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Haipeng</creatorcontrib><creatorcontrib>Fu, Lijun</creatorcontrib><creatorcontrib>Shang, Chengya</creatorcontrib><creatorcontrib>Fan, Yaxiang</creatorcontrib><creatorcontrib>Bao, Xianqiang</creatorcontrib><creatorcontrib>Xu, Xinghua</creatorcontrib><title>A Lithium-ion Battery State-of-Health Prediction Model Combining Convolutional Neural Network and Masked Multi-Head Attention Mechanism</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>The existing data-driven methods for the state of health (SOH) prediction of lithium-ion battery are limited by the data quantity, resulting in insufficient generalization performance, prediction accuracy and prediction stability. To tackle this challenge, this paper proposes a novel model, namely the CNN-MMHA, for SOH prediction. The CNN-MMHA incorporates mask mechanisms and multi-head attention mechanisms (MHA) to effectively capture the interdependencies within time series data (i.e. MMHA). Simultaneously, the utilization of the data conversion module and convolutional neural network (CNN) enables the capture of temporal sequences and local characteristics of battery states, accordingly enhancing the predictive ability of MMHA. In this study, This paper execute a sequence of simulation experiments on NASA and CALCE data sets, where this paper compare the performance of a variety of models: Multilayer Perceptron (MLP), Long Short-Term Memory Network (LSTM), CNN, CNN-LSTM, MMHA, and CNN-MMHA respectively. The results demonstrate that the proposed model yields optimal convergence and generalization performance. Furthermore, it has the utmost prediction accuracy and stability. Ultimately, the exceptional performance and real-world applicability of the proposed model are corroborated through its experiments on the real battery.</description><subject>Accuracy</subject><subject>CNN</subject><subject>CNN-MMHA</subject><subject>Convolutional neural networks</subject><subject>Data models</subject><subject>Data-driven methods</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Long short term memory</subject><subject>Mask mechanisms</subject><subject>Multi-head attention</subject><subject>Predictive models</subject><subject>SOH</subject><subject>Time series analysis</subject><issn>0885-8969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFjb1OwzAUhT2ARPnZGRjuCzjY-WsylqioA0VIdK9Mc0sudWxk34D6BLw2CbAzfUc6R98R4lqrRGtV326WTZKqNE-yPM_KtD4RM1VVhazqsj4T5zG-KaXzItUz8bWAB-KOhl6Sd3BnmDEc4ZkNo_R7uUJjuYOngC3teJqsfYsWGt-_kCP3Oib34e0wdcbCIw7hB_zpwwGMa2Ft4gFHDJZp8rWwGE_crwx3nXEU-0txujc24tUfL8TN_XLTrCQh4vY9UG_CcatVmc3nZZH9U38DGYpR6A</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Xiao, Haipeng</creator><creator>Fu, Lijun</creator><creator>Shang, Chengya</creator><creator>Fan, Yaxiang</creator><creator>Bao, Xianqiang</creator><creator>Xu, Xinghua</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope></search><sort><creationdate>20240814</creationdate><title>A Lithium-ion Battery State-of-Health Prediction Model Combining Convolutional Neural Network and Masked Multi-Head Attention Mechanism</title><author>Xiao, Haipeng ; Fu, Lijun ; Shang, Chengya ; Fan, Yaxiang ; Bao, Xianqiang ; Xu, Xinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_106377653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>CNN</topic><topic>CNN-MMHA</topic><topic>Convolutional neural networks</topic><topic>Data models</topic><topic>Data-driven methods</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Long short term memory</topic><topic>Mask mechanisms</topic><topic>Multi-head attention</topic><topic>Predictive models</topic><topic>SOH</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Haipeng</creatorcontrib><creatorcontrib>Fu, Lijun</creatorcontrib><creatorcontrib>Shang, Chengya</creatorcontrib><creatorcontrib>Fan, Yaxiang</creatorcontrib><creatorcontrib>Bao, Xianqiang</creatorcontrib><creatorcontrib>Xu, Xinghua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Haipeng</au><au>Fu, Lijun</au><au>Shang, Chengya</au><au>Fan, Yaxiang</au><au>Bao, Xianqiang</au><au>Xu, Xinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lithium-ion Battery State-of-Health Prediction Model Combining Convolutional Neural Network and Masked Multi-Head Attention Mechanism</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2024-08-14</date><risdate>2024</risdate><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0885-8969</issn><coden>ITCNE4</coden><abstract>The existing data-driven methods for the state of health (SOH) prediction of lithium-ion battery are limited by the data quantity, resulting in insufficient generalization performance, prediction accuracy and prediction stability. To tackle this challenge, this paper proposes a novel model, namely the CNN-MMHA, for SOH prediction. The CNN-MMHA incorporates mask mechanisms and multi-head attention mechanisms (MHA) to effectively capture the interdependencies within time series data (i.e. MMHA). Simultaneously, the utilization of the data conversion module and convolutional neural network (CNN) enables the capture of temporal sequences and local characteristics of battery states, accordingly enhancing the predictive ability of MMHA. In this study, This paper execute a sequence of simulation experiments on NASA and CALCE data sets, where this paper compare the performance of a variety of models: Multilayer Perceptron (MLP), Long Short-Term Memory Network (LSTM), CNN, CNN-LSTM, MMHA, and CNN-MMHA respectively. The results demonstrate that the proposed model yields optimal convergence and generalization performance. Furthermore, it has the utmost prediction accuracy and stability. Ultimately, the exceptional performance and real-world applicability of the proposed model are corroborated through its experiments on the real battery.</abstract><pub>IEEE</pub><doi>10.1109/TEC.2024.3443629</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2024-08, p.1-14
issn 0885-8969
language eng
recordid cdi_ieee_primary_10637765
source IEEE Electronic Library (IEL)
subjects Accuracy
CNN
CNN-MMHA
Convolutional neural networks
Data models
Data-driven methods
Lithium-ion batteries
Lithium-ion battery
Long short term memory
Mask mechanisms
Multi-head attention
Predictive models
SOH
Time series analysis
title A Lithium-ion Battery State-of-Health Prediction Model Combining Convolutional Neural Network and Masked Multi-Head Attention Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lithium-ion%20Battery%20State-of-Health%20Prediction%20Model%20Combining%20Convolutional%20Neural%20Network%20and%20Masked%20Multi-Head%20Attention%20Mechanism&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Xiao,%20Haipeng&rft.date=2024-08-14&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0885-8969&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2024.3443629&rft_dat=%3Cieee_RIE%3E10637765%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10637765&rfr_iscdi=true