Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images
In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segme...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.112381-112396 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112396 |
---|---|
container_issue | |
container_start_page | 112381 |
container_title | IEEE access |
container_volume | 12 |
creator | Baccouch, Wafa Hadidi, Tareq Benameur, Narjes Lahidheb, Dhaker Labidi, Salam |
description | In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial directions to offer a detailed regional assessment compared to traditional techniques. This method is based on automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol to automate the classification of myocardial segments into viable and nonviable classes. Additionally, we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our method to related works proves its superiority with an average mean absolute error (MAE) of 1.21~\pm ~1.00 . Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity of 97.52% with (p_value |
doi_str_mv | 10.1109/ACCESS.2024.3442080 |
format | Article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10633713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10633713</ieee_id><doaj_id>oai_doaj_org_article_4dddff09bbaa4f3fbde16e870f27b273</doaj_id><sourcerecordid>oai_doaj_org_article_4dddff09bbaa4f3fbde16e870f27b273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-b4dc74e6293eaa5993f6bdd45487a88e936f912a94d994bc5399d5fc7bcd92c43</originalsourceid><addsrcrecordid>eNpNkU1OHDEQhVtRIgURThAWvkBP_Nc_Xk5akIwEQQESllbZLk889LQju4do7sChMQyKqE2Vnt77avGq6jOjC8ao-rIchrObmwWnXC6ElJz29F11xFmratGI9v2b-2N1kvOGlumL1HRH1eMQp4c47uYQJ_IDdwnGsuZ_Md0THxO5Mhu0c3hAcrmPFpILxfA7gAljmPdkmTPmvMVpJl8hoyOFco3rAiu2OxhHcvsn2PupmMjPHUxz8MHCy7PzFLdkCBPWl9dktYU15k_VBw9jxpPXfVz9Oj-7Hb7XF1ffVsPyora8ZXNtpLOdxJYrgQCNUsK3xjnZyL6DvkclWq8YByWdUtLYRijlGm87Y53iVorjanXguggb_TeFLaS9jhD0ixDTWkOagx1RS-ec91QZAyC98MYha7HvqOed4Z0oLHFg2RRzTuj_8xjVz_3oQz_6uR_92k9JnR5SARHfJFohOibEE4Cgj7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baccouch, Wafa ; Hadidi, Tareq ; Benameur, Narjes ; Lahidheb, Dhaker ; Labidi, Salam</creator><creatorcontrib>Baccouch, Wafa ; Hadidi, Tareq ; Benameur, Narjes ; Lahidheb, Dhaker ; Labidi, Salam</creatorcontrib><description>In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial directions to offer a detailed regional assessment compared to traditional techniques. This method is based on automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol to automate the classification of myocardial segments into viable and nonviable classes. Additionally, we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our method to related works proves its superiority with an average mean absolute error (MAE) of <inline-formula> <tex-math notation="LaTeX">1.21~\pm ~1.00 </tex-math></inline-formula>. Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity of 97.52% with (p_value <0.001). The obtained results proved that incorporating the proposed protocol in clinical practice may facilitate the differentiation between viable and non-viable segments, aiding in directing patient care and minimizing intra and inter-observer variability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3442080</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; automatic quantification ; Automatic segmentation ; Biomedical imaging ; cine-MRI ; CNN ; Convolutional neural networks ; Image segmentation ; Magnetic resonance imaging ; Motion segmentation ; myocardial viability ; Myocardium ; regional wall thickness</subject><ispartof>IEEE access, 2024, Vol.12, p.112381-112396</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-b4dc74e6293eaa5993f6bdd45487a88e936f912a94d994bc5399d5fc7bcd92c43</cites><orcidid>0000-0001-5775-4864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10633713$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Baccouch, Wafa</creatorcontrib><creatorcontrib>Hadidi, Tareq</creatorcontrib><creatorcontrib>Benameur, Narjes</creatorcontrib><creatorcontrib>Lahidheb, Dhaker</creatorcontrib><creatorcontrib>Labidi, Salam</creatorcontrib><title>Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial directions to offer a detailed regional assessment compared to traditional techniques. This method is based on automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol to automate the classification of myocardial segments into viable and nonviable classes. Additionally, we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our method to related works proves its superiority with an average mean absolute error (MAE) of <inline-formula> <tex-math notation="LaTeX">1.21~\pm ~1.00 </tex-math></inline-formula>. Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity of 97.52% with (p_value <0.001). The obtained results proved that incorporating the proposed protocol in clinical practice may facilitate the differentiation between viable and non-viable segments, aiding in directing patient care and minimizing intra and inter-observer variability.</description><subject>Accuracy</subject><subject>automatic quantification</subject><subject>Automatic segmentation</subject><subject>Biomedical imaging</subject><subject>cine-MRI</subject><subject>CNN</subject><subject>Convolutional neural networks</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Motion segmentation</subject><subject>myocardial viability</subject><subject>Myocardium</subject><subject>regional wall thickness</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1OHDEQhVtRIgURThAWvkBP_Nc_Xk5akIwEQQESllbZLk889LQju4do7sChMQyKqE2Vnt77avGq6jOjC8ao-rIchrObmwWnXC6ElJz29F11xFmratGI9v2b-2N1kvOGlumL1HRH1eMQp4c47uYQJ_IDdwnGsuZ_Md0THxO5Mhu0c3hAcrmPFpILxfA7gAljmPdkmTPmvMVpJl8hoyOFco3rAiu2OxhHcvsn2PupmMjPHUxz8MHCy7PzFLdkCBPWl9dktYU15k_VBw9jxpPXfVz9Oj-7Hb7XF1ffVsPyora8ZXNtpLOdxJYrgQCNUsK3xjnZyL6DvkclWq8YByWdUtLYRijlGm87Y53iVorjanXguggb_TeFLaS9jhD0ixDTWkOagx1RS-ec91QZAyC98MYha7HvqOed4Z0oLHFg2RRzTuj_8xjVz_3oQz_6uR_92k9JnR5SARHfJFohOibEE4Cgj7g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Baccouch, Wafa</creator><creator>Hadidi, Tareq</creator><creator>Benameur, Narjes</creator><creator>Lahidheb, Dhaker</creator><creator>Labidi, Salam</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5775-4864</orcidid></search><sort><creationdate>2024</creationdate><title>Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images</title><author>Baccouch, Wafa ; Hadidi, Tareq ; Benameur, Narjes ; Lahidheb, Dhaker ; Labidi, Salam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-b4dc74e6293eaa5993f6bdd45487a88e936f912a94d994bc5399d5fc7bcd92c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>automatic quantification</topic><topic>Automatic segmentation</topic><topic>Biomedical imaging</topic><topic>cine-MRI</topic><topic>CNN</topic><topic>Convolutional neural networks</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Motion segmentation</topic><topic>myocardial viability</topic><topic>Myocardium</topic><topic>regional wall thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baccouch, Wafa</creatorcontrib><creatorcontrib>Hadidi, Tareq</creatorcontrib><creatorcontrib>Benameur, Narjes</creatorcontrib><creatorcontrib>Lahidheb, Dhaker</creatorcontrib><creatorcontrib>Labidi, Salam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccouch, Wafa</au><au>Hadidi, Tareq</au><au>Benameur, Narjes</au><au>Lahidheb, Dhaker</au><au>Labidi, Salam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>112381</spage><epage>112396</epage><pages>112381-112396</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial directions to offer a detailed regional assessment compared to traditional techniques. This method is based on automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol to automate the classification of myocardial segments into viable and nonviable classes. Additionally, we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our method to related works proves its superiority with an average mean absolute error (MAE) of <inline-formula> <tex-math notation="LaTeX">1.21~\pm ~1.00 </tex-math></inline-formula>. Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity of 97.52% with (p_value <0.001). The obtained results proved that incorporating the proposed protocol in clinical practice may facilitate the differentiation between viable and non-viable segments, aiding in directing patient care and minimizing intra and inter-observer variability.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3442080</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5775-4864</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.112381-112396 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10633713 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy automatic quantification Automatic segmentation Biomedical imaging cine-MRI CNN Convolutional neural networks Image segmentation Magnetic resonance imaging Motion segmentation myocardial viability Myocardium regional wall thickness |
title | Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20Neural%20Network%20for%20Objective%20Myocardial%20Viability%20Assessment%20Based%20on%20Regional%20Wall%20Thickness%20Quantification%20From%20Cine-MR%20Images&rft.jtitle=IEEE%20access&rft.au=Baccouch,%20Wafa&rft.date=2024&rft.volume=12&rft.spage=112381&rft.epage=112396&rft.pages=112381-112396&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3442080&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_4dddff09bbaa4f3fbde16e870f27b273%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10633713&rft_doaj_id=oai_doaj_org_article_4dddff09bbaa4f3fbde16e870f27b273&rfr_iscdi=true |