Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images

In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.112381-112396
Hauptverfasser: Baccouch, Wafa, Hadidi, Tareq, Benameur, Narjes, Lahidheb, Dhaker, Labidi, Salam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112396
container_issue
container_start_page 112381
container_title IEEE access
container_volume 12
creator Baccouch, Wafa
Hadidi, Tareq
Benameur, Narjes
Lahidheb, Dhaker
Labidi, Salam
description In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial directions to offer a detailed regional assessment compared to traditional techniques. This method is based on automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol to automate the classification of myocardial segments into viable and nonviable classes. Additionally, we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our method to related works proves its superiority with an average mean absolute error (MAE) of 1.21~\pm ~1.00 . Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity of 97.52% with (p_value
doi_str_mv 10.1109/ACCESS.2024.3442080
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10633713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10633713</ieee_id><doaj_id>oai_doaj_org_article_4dddff09bbaa4f3fbde16e870f27b273</doaj_id><sourcerecordid>oai_doaj_org_article_4dddff09bbaa4f3fbde16e870f27b273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-b4dc74e6293eaa5993f6bdd45487a88e936f912a94d994bc5399d5fc7bcd92c43</originalsourceid><addsrcrecordid>eNpNkU1OHDEQhVtRIgURThAWvkBP_Nc_Xk5akIwEQQESllbZLk889LQju4do7sChMQyKqE2Vnt77avGq6jOjC8ao-rIchrObmwWnXC6ElJz29F11xFmratGI9v2b-2N1kvOGlumL1HRH1eMQp4c47uYQJ_IDdwnGsuZ_Md0THxO5Mhu0c3hAcrmPFpILxfA7gAljmPdkmTPmvMVpJl8hoyOFco3rAiu2OxhHcvsn2PupmMjPHUxz8MHCy7PzFLdkCBPWl9dktYU15k_VBw9jxpPXfVz9Oj-7Hb7XF1ffVsPyora8ZXNtpLOdxJYrgQCNUsK3xjnZyL6DvkclWq8YByWdUtLYRijlGm87Y53iVorjanXguggb_TeFLaS9jhD0ixDTWkOagx1RS-ec91QZAyC98MYha7HvqOed4Z0oLHFg2RRzTuj_8xjVz_3oQz_6uR_92k9JnR5SARHfJFohOibEE4Cgj7g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Baccouch, Wafa ; Hadidi, Tareq ; Benameur, Narjes ; Lahidheb, Dhaker ; Labidi, Salam</creator><creatorcontrib>Baccouch, Wafa ; Hadidi, Tareq ; Benameur, Narjes ; Lahidheb, Dhaker ; Labidi, Salam</creatorcontrib><description>In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial directions to offer a detailed regional assessment compared to traditional techniques. This method is based on automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol to automate the classification of myocardial segments into viable and nonviable classes. Additionally, we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our method to related works proves its superiority with an average mean absolute error (MAE) of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1.21~\pm ~1.00 &lt;/tex-math&gt;&lt;/inline-formula&gt;. Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity of 97.52% with (p_value &lt;0.001). The obtained results proved that incorporating the proposed protocol in clinical practice may facilitate the differentiation between viable and non-viable segments, aiding in directing patient care and minimizing intra and inter-observer variability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3442080</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; automatic quantification ; Automatic segmentation ; Biomedical imaging ; cine-MRI ; CNN ; Convolutional neural networks ; Image segmentation ; Magnetic resonance imaging ; Motion segmentation ; myocardial viability ; Myocardium ; regional wall thickness</subject><ispartof>IEEE access, 2024, Vol.12, p.112381-112396</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-b4dc74e6293eaa5993f6bdd45487a88e936f912a94d994bc5399d5fc7bcd92c43</cites><orcidid>0000-0001-5775-4864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10633713$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Baccouch, Wafa</creatorcontrib><creatorcontrib>Hadidi, Tareq</creatorcontrib><creatorcontrib>Benameur, Narjes</creatorcontrib><creatorcontrib>Lahidheb, Dhaker</creatorcontrib><creatorcontrib>Labidi, Salam</creatorcontrib><title>Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial directions to offer a detailed regional assessment compared to traditional techniques. This method is based on automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol to automate the classification of myocardial segments into viable and nonviable classes. Additionally, we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our method to related works proves its superiority with an average mean absolute error (MAE) of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1.21~\pm ~1.00 &lt;/tex-math&gt;&lt;/inline-formula&gt;. Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity of 97.52% with (p_value &lt;0.001). The obtained results proved that incorporating the proposed protocol in clinical practice may facilitate the differentiation between viable and non-viable segments, aiding in directing patient care and minimizing intra and inter-observer variability.</description><subject>Accuracy</subject><subject>automatic quantification</subject><subject>Automatic segmentation</subject><subject>Biomedical imaging</subject><subject>cine-MRI</subject><subject>CNN</subject><subject>Convolutional neural networks</subject><subject>Image segmentation</subject><subject>Magnetic resonance imaging</subject><subject>Motion segmentation</subject><subject>myocardial viability</subject><subject>Myocardium</subject><subject>regional wall thickness</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1OHDEQhVtRIgURThAWvkBP_Nc_Xk5akIwEQQESllbZLk889LQju4do7sChMQyKqE2Vnt77avGq6jOjC8ao-rIchrObmwWnXC6ElJz29F11xFmratGI9v2b-2N1kvOGlumL1HRH1eMQp4c47uYQJ_IDdwnGsuZ_Md0THxO5Mhu0c3hAcrmPFpILxfA7gAljmPdkmTPmvMVpJl8hoyOFco3rAiu2OxhHcvsn2PupmMjPHUxz8MHCy7PzFLdkCBPWl9dktYU15k_VBw9jxpPXfVz9Oj-7Hb7XF1ffVsPyora8ZXNtpLOdxJYrgQCNUsK3xjnZyL6DvkclWq8YByWdUtLYRijlGm87Y53iVorjanXguggb_TeFLaS9jhD0ixDTWkOagx1RS-ec91QZAyC98MYha7HvqOed4Z0oLHFg2RRzTuj_8xjVz_3oQz_6uR_92k9JnR5SARHfJFohOibEE4Cgj7g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Baccouch, Wafa</creator><creator>Hadidi, Tareq</creator><creator>Benameur, Narjes</creator><creator>Lahidheb, Dhaker</creator><creator>Labidi, Salam</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5775-4864</orcidid></search><sort><creationdate>2024</creationdate><title>Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images</title><author>Baccouch, Wafa ; Hadidi, Tareq ; Benameur, Narjes ; Lahidheb, Dhaker ; Labidi, Salam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-b4dc74e6293eaa5993f6bdd45487a88e936f912a94d994bc5399d5fc7bcd92c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>automatic quantification</topic><topic>Automatic segmentation</topic><topic>Biomedical imaging</topic><topic>cine-MRI</topic><topic>CNN</topic><topic>Convolutional neural networks</topic><topic>Image segmentation</topic><topic>Magnetic resonance imaging</topic><topic>Motion segmentation</topic><topic>myocardial viability</topic><topic>Myocardium</topic><topic>regional wall thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baccouch, Wafa</creatorcontrib><creatorcontrib>Hadidi, Tareq</creatorcontrib><creatorcontrib>Benameur, Narjes</creatorcontrib><creatorcontrib>Lahidheb, Dhaker</creatorcontrib><creatorcontrib>Labidi, Salam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baccouch, Wafa</au><au>Hadidi, Tareq</au><au>Benameur, Narjes</au><au>Lahidheb, Dhaker</au><au>Labidi, Salam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>112381</spage><epage>112396</epage><pages>112381-112396</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In clinical routine, the assessment of myocardial viability is based on visual analysis of late gadolinium enhancement (LGE) sequences. This procedure remains subjective and insufficient, particularly in cases of improbable viability, where scar transmurality spans 25% to 75% of the myocardial segment total thickness. To address these challenges, this paper introduces a novel framework based on deep convolutional neural network (CNN) for objective and quantitative assessment of myocardial viability. The proposed method was validated on 73 patients with myocardial infarction and 10 healthy subjects. The initial stage involves the automatic quantification of regional myocardial wall thickness (MWT) in multiple radial directions to offer a detailed regional assessment compared to traditional techniques. This method is based on automatic segmentation of the left ventricle contours using U-Net. Afterwards, we proposed a novel protocol to automate the classification of myocardial segments into viable and nonviable classes. Additionally, we introduced MWT as a new key parameter for studying peri-infarct areas. Comparative study of our method to related works proves its superiority with an average mean absolute error (MAE) of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;1.21~\pm ~1.00 &lt;/tex-math&gt;&lt;/inline-formula&gt;. Accurate quantification of MWT allowed the detection of myocardial segments desynchronization and the delimitation of infarction transmurality with an accuracy of 98.13%, a specificity of 99.09% and a sensitivity of 97.52% with (p_value &lt;0.001). The obtained results proved that incorporating the proposed protocol in clinical practice may facilitate the differentiation between viable and non-viable segments, aiding in directing patient care and minimizing intra and inter-observer variability.</abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3442080</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5775-4864</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.112381-112396
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10633713
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
automatic quantification
Automatic segmentation
Biomedical imaging
cine-MRI
CNN
Convolutional neural networks
Image segmentation
Magnetic resonance imaging
Motion segmentation
myocardial viability
Myocardium
regional wall thickness
title Convolution Neural Network for Objective Myocardial Viability Assessment Based on Regional Wall Thickness Quantification From Cine-MR Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20Neural%20Network%20for%20Objective%20Myocardial%20Viability%20Assessment%20Based%20on%20Regional%20Wall%20Thickness%20Quantification%20From%20Cine-MR%20Images&rft.jtitle=IEEE%20access&rft.au=Baccouch,%20Wafa&rft.date=2024&rft.volume=12&rft.spage=112381&rft.epage=112396&rft.pages=112381-112396&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3442080&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_4dddff09bbaa4f3fbde16e870f27b273%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10633713&rft_doaj_id=oai_doaj_org_article_4dddff09bbaa4f3fbde16e870f27b273&rfr_iscdi=true