Mechanical design aspects of the HYVAX railgun

The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Trans. Magn.; (United States) 1984-03, Vol.20 (2), p.249-251
Hauptverfasser: Fox, W., Cummings, C., Davidson, R., Parker, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 2
container_start_page 249
container_title IEEE Trans. Magn.; (United States)
container_volume 20
creator Fox, W.
Cummings, C.
Davidson, R.
Parker, J.
description The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is composed of seven O.3-m-long power input modules and nine 1.2-m-long accelerating modules. The gun is designed for a 100-shot life. To accommodate this, the bore may be enlarged from an initial diameter of 10.8 mm to a final diameter of 12.7 mm. This will allow the bore to be refinished several times during the life of the gun. To minimize mechanical and arc damage to the gun between bore refinishing operations, the gun will incorporate a low pressure helium projectile injector. Projectiles will be injected under vacuum at 350 m/s. The gun will be operated at a peak current and voltage of 600 kA and 6 kV respectively. The gun will undergo three phases of testing. The first phase will be the characterization of the gun's performance using a 3.0-m-long section of the gun comprising two power modules and two accelerating modules. This testing will be accomplished using two of the seven capacitor bank modules shown in Fig. 1. The second test phase will use a distributed power configuration and seven capacitor bank modules, as shown in Fig. 1, to demonstrate a velocity of 15 km/s with a 1-g projectile. The predicted performance of the gun for this test phase is illustrated in Fig. 2. In the third phase of testing we will use a magnetic flux compression generator (MFCG) to power the gun with a goal of demonstrating a velocity of 25 km/s.
doi_str_mv 10.1109/TMAG.1984.1063084
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1063084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1063084</ieee_id><sourcerecordid>24258595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a8d79f37776a941244fb7b374a068c22240cac9eaf31188f66dce3146ae0a98f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwAxBLxMCWcI4df4xVBS1SK5aCYLJc99wapUmJ04F_T6J0YGM6ne55T68eQm4pZJSCflwtJ7OMasUzCoKB4mdkRDWnKYDQ52QEQFWqueCX5CrGr27lBYURyZbodrYKzpbJBmPYVomNB3RtTGqftDtM5p_vk4-ksaHcHqtrcuFtGfHmNMfk7flpNZ2ni9fZy3SySB3TRZtatZHaMymlsF2JnHO_lmsmuQWhXJ7nHJx1Gq1nlCrlhdg4ZJQLi2C18mxM7oe_dWyDiS60XU1XV1XXzAgqQSvooIcBOjT19xFja_YhOixLW2F9jCZXjCnJi_9Bnheq0D1IB9A1dYwNenNowt42P4aC6T2b3rPpPZuT5y5zN2QCIv7hh-sv1xJ2jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24258595</pqid></control><display><type>article</type><title>Mechanical design aspects of the HYVAX railgun</title><source>IEEE Electronic Library (IEL)</source><creator>Fox, W. ; Cummings, C. ; Davidson, R. ; Parker, J.</creator><creatorcontrib>Fox, W. ; Cummings, C. ; Davidson, R. ; Parker, J. ; Los Alamos National Laboratory, Los Alamos, NM</creatorcontrib><description>The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is composed of seven O.3-m-long power input modules and nine 1.2-m-long accelerating modules. The gun is designed for a 100-shot life. To accommodate this, the bore may be enlarged from an initial diameter of 10.8 mm to a final diameter of 12.7 mm. This will allow the bore to be refinished several times during the life of the gun. To minimize mechanical and arc damage to the gun between bore refinishing operations, the gun will incorporate a low pressure helium projectile injector. Projectiles will be injected under vacuum at 350 m/s. The gun will be operated at a peak current and voltage of 600 kA and 6 kV respectively. The gun will undergo three phases of testing. The first phase will be the characterization of the gun's performance using a 3.0-m-long section of the gun comprising two power modules and two accelerating modules. This testing will be accomplished using two of the seven capacitor bank modules shown in Fig. 1. The second test phase will use a distributed power configuration and seven capacitor bank modules, as shown in Fig. 1, to demonstrate a velocity of 15 km/s with a 1-g projectile. The predicted performance of the gun for this test phase is illustrated in Fig. 2. In the third phase of testing we will use a magnetic flux compression generator (MFCG) to power the gun with a goal of demonstrating a velocity of 25 km/s.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1984.1063084</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700208 - Fusion Power Plant Technology- Inertial Confinement Technology ; Acceleration ; ACCELERATORS ; Boring ; Capacitors ; DESIGN ; ELECTRONIC EQUIPMENT ; ENERGY STORAGE ; FLUID INJECTION ; GAS INJECTION ; Magnetic flux ; MODULAR STRUCTURES ; Multichip modules ; PERFORMANCE TESTING ; POWER SUPPLIES ; PROJECTILES ; RAILGUN ACCELERATORS ; Railguns ; SERVICE LIFE ; STORAGE ; TESTING ; VELOCITY ; Voltage</subject><ispartof>IEEE Trans. Magn.; (United States), 1984-03, Vol.20 (2), p.249-251</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a8d79f37776a941244fb7b374a068c22240cac9eaf31188f66dce3146ae0a98f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1063084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,883,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1063084$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/6170980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, W.</creatorcontrib><creatorcontrib>Cummings, C.</creatorcontrib><creatorcontrib>Davidson, R.</creatorcontrib><creatorcontrib>Parker, J.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory, Los Alamos, NM</creatorcontrib><title>Mechanical design aspects of the HYVAX railgun</title><title>IEEE Trans. Magn.; (United States)</title><addtitle>TMAG</addtitle><description>The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is composed of seven O.3-m-long power input modules and nine 1.2-m-long accelerating modules. The gun is designed for a 100-shot life. To accommodate this, the bore may be enlarged from an initial diameter of 10.8 mm to a final diameter of 12.7 mm. This will allow the bore to be refinished several times during the life of the gun. To minimize mechanical and arc damage to the gun between bore refinishing operations, the gun will incorporate a low pressure helium projectile injector. Projectiles will be injected under vacuum at 350 m/s. The gun will be operated at a peak current and voltage of 600 kA and 6 kV respectively. The gun will undergo three phases of testing. The first phase will be the characterization of the gun's performance using a 3.0-m-long section of the gun comprising two power modules and two accelerating modules. This testing will be accomplished using two of the seven capacitor bank modules shown in Fig. 1. The second test phase will use a distributed power configuration and seven capacitor bank modules, as shown in Fig. 1, to demonstrate a velocity of 15 km/s with a 1-g projectile. The predicted performance of the gun for this test phase is illustrated in Fig. 2. In the third phase of testing we will use a magnetic flux compression generator (MFCG) to power the gun with a goal of demonstrating a velocity of 25 km/s.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700208 - Fusion Power Plant Technology- Inertial Confinement Technology</subject><subject>Acceleration</subject><subject>ACCELERATORS</subject><subject>Boring</subject><subject>Capacitors</subject><subject>DESIGN</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>ENERGY STORAGE</subject><subject>FLUID INJECTION</subject><subject>GAS INJECTION</subject><subject>Magnetic flux</subject><subject>MODULAR STRUCTURES</subject><subject>Multichip modules</subject><subject>PERFORMANCE TESTING</subject><subject>POWER SUPPLIES</subject><subject>PROJECTILES</subject><subject>RAILGUN ACCELERATORS</subject><subject>Railguns</subject><subject>SERVICE LIFE</subject><subject>STORAGE</subject><subject>TESTING</subject><subject>VELOCITY</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwAxBLxMCWcI4df4xVBS1SK5aCYLJc99wapUmJ04F_T6J0YGM6ne55T68eQm4pZJSCflwtJ7OMasUzCoKB4mdkRDWnKYDQ52QEQFWqueCX5CrGr27lBYURyZbodrYKzpbJBmPYVomNB3RtTGqftDtM5p_vk4-ksaHcHqtrcuFtGfHmNMfk7flpNZ2ni9fZy3SySB3TRZtatZHaMymlsF2JnHO_lmsmuQWhXJ7nHJx1Gq1nlCrlhdg4ZJQLi2C18mxM7oe_dWyDiS60XU1XV1XXzAgqQSvooIcBOjT19xFja_YhOixLW2F9jCZXjCnJi_9Bnheq0D1IB9A1dYwNenNowt42P4aC6T2b3rPpPZuT5y5zN2QCIv7hh-sv1xJ2jg</recordid><startdate>19840301</startdate><enddate>19840301</enddate><creator>Fox, W.</creator><creator>Cummings, C.</creator><creator>Davidson, R.</creator><creator>Parker, J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>OTOTI</scope></search><sort><creationdate>19840301</creationdate><title>Mechanical design aspects of the HYVAX railgun</title><author>Fox, W. ; Cummings, C. ; Davidson, R. ; Parker, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a8d79f37776a941244fb7b374a068c22240cac9eaf31188f66dce3146ae0a98f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700208 - Fusion Power Plant Technology- Inertial Confinement Technology</topic><topic>Acceleration</topic><topic>ACCELERATORS</topic><topic>Boring</topic><topic>Capacitors</topic><topic>DESIGN</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>ENERGY STORAGE</topic><topic>FLUID INJECTION</topic><topic>GAS INJECTION</topic><topic>Magnetic flux</topic><topic>MODULAR STRUCTURES</topic><topic>Multichip modules</topic><topic>PERFORMANCE TESTING</topic><topic>POWER SUPPLIES</topic><topic>PROJECTILES</topic><topic>RAILGUN ACCELERATORS</topic><topic>Railguns</topic><topic>SERVICE LIFE</topic><topic>STORAGE</topic><topic>TESTING</topic><topic>VELOCITY</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Fox, W.</creatorcontrib><creatorcontrib>Cummings, C.</creatorcontrib><creatorcontrib>Davidson, R.</creatorcontrib><creatorcontrib>Parker, J.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory, Los Alamos, NM</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE Trans. Magn.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fox, W.</au><au>Cummings, C.</au><au>Davidson, R.</au><au>Parker, J.</au><aucorp>Los Alamos National Laboratory, Los Alamos, NM</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical design aspects of the HYVAX railgun</atitle><jtitle>IEEE Trans. Magn.; (United States)</jtitle><stitle>TMAG</stitle><date>1984-03-01</date><risdate>1984</risdate><volume>20</volume><issue>2</issue><spage>249</spage><epage>251</epage><pages>249-251</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is composed of seven O.3-m-long power input modules and nine 1.2-m-long accelerating modules. The gun is designed for a 100-shot life. To accommodate this, the bore may be enlarged from an initial diameter of 10.8 mm to a final diameter of 12.7 mm. This will allow the bore to be refinished several times during the life of the gun. To minimize mechanical and arc damage to the gun between bore refinishing operations, the gun will incorporate a low pressure helium projectile injector. Projectiles will be injected under vacuum at 350 m/s. The gun will be operated at a peak current and voltage of 600 kA and 6 kV respectively. The gun will undergo three phases of testing. The first phase will be the characterization of the gun's performance using a 3.0-m-long section of the gun comprising two power modules and two accelerating modules. This testing will be accomplished using two of the seven capacitor bank modules shown in Fig. 1. The second test phase will use a distributed power configuration and seven capacitor bank modules, as shown in Fig. 1, to demonstrate a velocity of 15 km/s with a 1-g projectile. The predicted performance of the gun for this test phase is illustrated in Fig. 2. In the third phase of testing we will use a magnetic flux compression generator (MFCG) to power the gun with a goal of demonstrating a velocity of 25 km/s.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TMAG.1984.1063084</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE Trans. Magn.; (United States), 1984-03, Vol.20 (2), p.249-251
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_1063084
source IEEE Electronic Library (IEL)
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
700208 - Fusion Power Plant Technology- Inertial Confinement Technology
Acceleration
ACCELERATORS
Boring
Capacitors
DESIGN
ELECTRONIC EQUIPMENT
ENERGY STORAGE
FLUID INJECTION
GAS INJECTION
Magnetic flux
MODULAR STRUCTURES
Multichip modules
PERFORMANCE TESTING
POWER SUPPLIES
PROJECTILES
RAILGUN ACCELERATORS
Railguns
SERVICE LIFE
STORAGE
TESTING
VELOCITY
Voltage
title Mechanical design aspects of the HYVAX railgun
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20design%20aspects%20of%20the%20HYVAX%20railgun&rft.jtitle=IEEE%20Trans.%20Magn.;%20(United%20States)&rft.au=Fox,%20W.&rft.aucorp=Los%20Alamos%20National%20Laboratory,%20Los%20Alamos,%20NM&rft.date=1984-03-01&rft.volume=20&rft.issue=2&rft.spage=249&rft.epage=251&rft.pages=249-251&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1984.1063084&rft_dat=%3Cproquest_RIE%3E24258595%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24258595&rft_id=info:pmid/&rft_ieee_id=1063084&rfr_iscdi=true