Mechanical design aspects of the HYVAX railgun
The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is co...
Gespeichert in:
Veröffentlicht in: | IEEE Trans. Magn.; (United States) 1984-03, Vol.20 (2), p.249-251 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 2 |
container_start_page | 249 |
container_title | IEEE Trans. Magn.; (United States) |
container_volume | 20 |
creator | Fox, W. Cummings, C. Davidson, R. Parker, J. |
description | The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is composed of seven O.3-m-long power input modules and nine 1.2-m-long accelerating modules. The gun is designed for a 100-shot life. To accommodate this, the bore may be enlarged from an initial diameter of 10.8 mm to a final diameter of 12.7 mm. This will allow the bore to be refinished several times during the life of the gun. To minimize mechanical and arc damage to the gun between bore refinishing operations, the gun will incorporate a low pressure helium projectile injector. Projectiles will be injected under vacuum at 350 m/s. The gun will be operated at a peak current and voltage of 600 kA and 6 kV respectively. The gun will undergo three phases of testing. The first phase will be the characterization of the gun's performance using a 3.0-m-long section of the gun comprising two power modules and two accelerating modules. This testing will be accomplished using two of the seven capacitor bank modules shown in Fig. 1. The second test phase will use a distributed power configuration and seven capacitor bank modules, as shown in Fig. 1, to demonstrate a velocity of 15 km/s with a 1-g projectile. The predicted performance of the gun for this test phase is illustrated in Fig. 2. In the third phase of testing we will use a magnetic flux compression generator (MFCG) to power the gun with a goal of demonstrating a velocity of 25 km/s. |
doi_str_mv | 10.1109/TMAG.1984.1063084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1063084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1063084</ieee_id><sourcerecordid>24258595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a8d79f37776a941244fb7b374a068c22240cac9eaf31188f66dce3146ae0a98f3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwAxBLxMCWcI4df4xVBS1SK5aCYLJc99wapUmJ04F_T6J0YGM6ne55T68eQm4pZJSCflwtJ7OMasUzCoKB4mdkRDWnKYDQ52QEQFWqueCX5CrGr27lBYURyZbodrYKzpbJBmPYVomNB3RtTGqftDtM5p_vk4-ksaHcHqtrcuFtGfHmNMfk7flpNZ2ni9fZy3SySB3TRZtatZHaMymlsF2JnHO_lmsmuQWhXJ7nHJx1Gq1nlCrlhdg4ZJQLi2C18mxM7oe_dWyDiS60XU1XV1XXzAgqQSvooIcBOjT19xFja_YhOixLW2F9jCZXjCnJi_9Bnheq0D1IB9A1dYwNenNowt42P4aC6T2b3rPpPZuT5y5zN2QCIv7hh-sv1xJ2jg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24258595</pqid></control><display><type>article</type><title>Mechanical design aspects of the HYVAX railgun</title><source>IEEE Electronic Library (IEL)</source><creator>Fox, W. ; Cummings, C. ; Davidson, R. ; Parker, J.</creator><creatorcontrib>Fox, W. ; Cummings, C. ; Davidson, R. ; Parker, J. ; Los Alamos National Laboratory, Los Alamos, NM</creatorcontrib><description>The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is composed of seven O.3-m-long power input modules and nine 1.2-m-long accelerating modules. The gun is designed for a 100-shot life. To accommodate this, the bore may be enlarged from an initial diameter of 10.8 mm to a final diameter of 12.7 mm. This will allow the bore to be refinished several times during the life of the gun. To minimize mechanical and arc damage to the gun between bore refinishing operations, the gun will incorporate a low pressure helium projectile injector. Projectiles will be injected under vacuum at 350 m/s. The gun will be operated at a peak current and voltage of 600 kA and 6 kV respectively. The gun will undergo three phases of testing. The first phase will be the characterization of the gun's performance using a 3.0-m-long section of the gun comprising two power modules and two accelerating modules. This testing will be accomplished using two of the seven capacitor bank modules shown in Fig. 1. The second test phase will use a distributed power configuration and seven capacitor bank modules, as shown in Fig. 1, to demonstrate a velocity of 15 km/s with a 1-g projectile. The predicted performance of the gun for this test phase is illustrated in Fig. 2. In the third phase of testing we will use a magnetic flux compression generator (MFCG) to power the gun with a goal of demonstrating a velocity of 25 km/s.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1984.1063084</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; 700208 - Fusion Power Plant Technology- Inertial Confinement Technology ; Acceleration ; ACCELERATORS ; Boring ; Capacitors ; DESIGN ; ELECTRONIC EQUIPMENT ; ENERGY STORAGE ; FLUID INJECTION ; GAS INJECTION ; Magnetic flux ; MODULAR STRUCTURES ; Multichip modules ; PERFORMANCE TESTING ; POWER SUPPLIES ; PROJECTILES ; RAILGUN ACCELERATORS ; Railguns ; SERVICE LIFE ; STORAGE ; TESTING ; VELOCITY ; Voltage</subject><ispartof>IEEE Trans. Magn.; (United States), 1984-03, Vol.20 (2), p.249-251</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a8d79f37776a941244fb7b374a068c22240cac9eaf31188f66dce3146ae0a98f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1063084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,883,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1063084$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/6170980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fox, W.</creatorcontrib><creatorcontrib>Cummings, C.</creatorcontrib><creatorcontrib>Davidson, R.</creatorcontrib><creatorcontrib>Parker, J.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory, Los Alamos, NM</creatorcontrib><title>Mechanical design aspects of the HYVAX railgun</title><title>IEEE Trans. Magn.; (United States)</title><addtitle>TMAG</addtitle><description>The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is composed of seven O.3-m-long power input modules and nine 1.2-m-long accelerating modules. The gun is designed for a 100-shot life. To accommodate this, the bore may be enlarged from an initial diameter of 10.8 mm to a final diameter of 12.7 mm. This will allow the bore to be refinished several times during the life of the gun. To minimize mechanical and arc damage to the gun between bore refinishing operations, the gun will incorporate a low pressure helium projectile injector. Projectiles will be injected under vacuum at 350 m/s. The gun will be operated at a peak current and voltage of 600 kA and 6 kV respectively. The gun will undergo three phases of testing. The first phase will be the characterization of the gun's performance using a 3.0-m-long section of the gun comprising two power modules and two accelerating modules. This testing will be accomplished using two of the seven capacitor bank modules shown in Fig. 1. The second test phase will use a distributed power configuration and seven capacitor bank modules, as shown in Fig. 1, to demonstrate a velocity of 15 km/s with a 1-g projectile. The predicted performance of the gun for this test phase is illustrated in Fig. 2. In the third phase of testing we will use a magnetic flux compression generator (MFCG) to power the gun with a goal of demonstrating a velocity of 25 km/s.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>700208 - Fusion Power Plant Technology- Inertial Confinement Technology</subject><subject>Acceleration</subject><subject>ACCELERATORS</subject><subject>Boring</subject><subject>Capacitors</subject><subject>DESIGN</subject><subject>ELECTRONIC EQUIPMENT</subject><subject>ENERGY STORAGE</subject><subject>FLUID INJECTION</subject><subject>GAS INJECTION</subject><subject>Magnetic flux</subject><subject>MODULAR STRUCTURES</subject><subject>Multichip modules</subject><subject>PERFORMANCE TESTING</subject><subject>POWER SUPPLIES</subject><subject>PROJECTILES</subject><subject>RAILGUN ACCELERATORS</subject><subject>Railguns</subject><subject>SERVICE LIFE</subject><subject>STORAGE</subject><subject>TESTING</subject><subject>VELOCITY</subject><subject>Voltage</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwAxBLxMCWcI4df4xVBS1SK5aCYLJc99wapUmJ04F_T6J0YGM6ne55T68eQm4pZJSCflwtJ7OMasUzCoKB4mdkRDWnKYDQ52QEQFWqueCX5CrGr27lBYURyZbodrYKzpbJBmPYVomNB3RtTGqftDtM5p_vk4-ksaHcHqtrcuFtGfHmNMfk7flpNZ2ni9fZy3SySB3TRZtatZHaMymlsF2JnHO_lmsmuQWhXJ7nHJx1Gq1nlCrlhdg4ZJQLi2C18mxM7oe_dWyDiS60XU1XV1XXzAgqQSvooIcBOjT19xFja_YhOixLW2F9jCZXjCnJi_9Bnheq0D1IB9A1dYwNenNowt42P4aC6T2b3rPpPZuT5y5zN2QCIv7hh-sv1xJ2jg</recordid><startdate>19840301</startdate><enddate>19840301</enddate><creator>Fox, W.</creator><creator>Cummings, C.</creator><creator>Davidson, R.</creator><creator>Parker, J.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SP</scope><scope>OTOTI</scope></search><sort><creationdate>19840301</creationdate><title>Mechanical design aspects of the HYVAX railgun</title><author>Fox, W. ; Cummings, C. ; Davidson, R. ; Parker, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a8d79f37776a941244fb7b374a068c22240cac9eaf31188f66dce3146ae0a98f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>700208 - Fusion Power Plant Technology- Inertial Confinement Technology</topic><topic>Acceleration</topic><topic>ACCELERATORS</topic><topic>Boring</topic><topic>Capacitors</topic><topic>DESIGN</topic><topic>ELECTRONIC EQUIPMENT</topic><topic>ENERGY STORAGE</topic><topic>FLUID INJECTION</topic><topic>GAS INJECTION</topic><topic>Magnetic flux</topic><topic>MODULAR STRUCTURES</topic><topic>Multichip modules</topic><topic>PERFORMANCE TESTING</topic><topic>POWER SUPPLIES</topic><topic>PROJECTILES</topic><topic>RAILGUN ACCELERATORS</topic><topic>Railguns</topic><topic>SERVICE LIFE</topic><topic>STORAGE</topic><topic>TESTING</topic><topic>VELOCITY</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Fox, W.</creatorcontrib><creatorcontrib>Cummings, C.</creatorcontrib><creatorcontrib>Davidson, R.</creatorcontrib><creatorcontrib>Parker, J.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory, Los Alamos, NM</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE Trans. Magn.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fox, W.</au><au>Cummings, C.</au><au>Davidson, R.</au><au>Parker, J.</au><aucorp>Los Alamos National Laboratory, Los Alamos, NM</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical design aspects of the HYVAX railgun</atitle><jtitle>IEEE Trans. Magn.; (United States)</jtitle><stitle>TMAG</stitle><date>1984-03-01</date><risdate>1984</risdate><volume>20</volume><issue>2</issue><spage>249</spage><epage>251</epage><pages>249-251</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>The hypervelocity experiment (HYVAX) railgun (Fig. 1) is designed to produce projectile velocities greater than 15 km/s in a 13-m-long, round bore gun. The HYVAX gun incorporates a modular design enabling it to operate in either a distributed energy-storage mode or a single-stage mode. The gun is composed of seven O.3-m-long power input modules and nine 1.2-m-long accelerating modules. The gun is designed for a 100-shot life. To accommodate this, the bore may be enlarged from an initial diameter of 10.8 mm to a final diameter of 12.7 mm. This will allow the bore to be refinished several times during the life of the gun. To minimize mechanical and arc damage to the gun between bore refinishing operations, the gun will incorporate a low pressure helium projectile injector. Projectiles will be injected under vacuum at 350 m/s. The gun will be operated at a peak current and voltage of 600 kA and 6 kV respectively. The gun will undergo three phases of testing. The first phase will be the characterization of the gun's performance using a 3.0-m-long section of the gun comprising two power modules and two accelerating modules. This testing will be accomplished using two of the seven capacitor bank modules shown in Fig. 1. The second test phase will use a distributed power configuration and seven capacitor bank modules, as shown in Fig. 1, to demonstrate a velocity of 15 km/s with a 1-g projectile. The predicted performance of the gun for this test phase is illustrated in Fig. 2. In the third phase of testing we will use a magnetic flux compression generator (MFCG) to power the gun with a goal of demonstrating a velocity of 25 km/s.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TMAG.1984.1063084</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE Trans. Magn.; (United States), 1984-03, Vol.20 (2), p.249-251 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_1063084 |
source | IEEE Electronic Library (IEL) |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY 700208 - Fusion Power Plant Technology- Inertial Confinement Technology Acceleration ACCELERATORS Boring Capacitors DESIGN ELECTRONIC EQUIPMENT ENERGY STORAGE FLUID INJECTION GAS INJECTION Magnetic flux MODULAR STRUCTURES Multichip modules PERFORMANCE TESTING POWER SUPPLIES PROJECTILES RAILGUN ACCELERATORS Railguns SERVICE LIFE STORAGE TESTING VELOCITY Voltage |
title | Mechanical design aspects of the HYVAX railgun |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20design%20aspects%20of%20the%20HYVAX%20railgun&rft.jtitle=IEEE%20Trans.%20Magn.;%20(United%20States)&rft.au=Fox,%20W.&rft.aucorp=Los%20Alamos%20National%20Laboratory,%20Los%20Alamos,%20NM&rft.date=1984-03-01&rft.volume=20&rft.issue=2&rft.spage=249&rft.epage=251&rft.pages=249-251&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1984.1063084&rft_dat=%3Cproquest_RIE%3E24258595%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24258595&rft_id=info:pmid/&rft_ieee_id=1063084&rfr_iscdi=true |