Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton

To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2024-08, p.1-11
Hauptverfasser: Liu, Hao, Fang, Kaiwen, Chen, Leran, Xu, Chenghao, Chen, Cheng, Wang, Ting, Wu, Zining, Chen, Gong, Fu, Chenglong, Ye, Jing, Wang, Hongqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE/ASME transactions on mechatronics
container_volume
creator Liu, Hao
Fang, Kaiwen
Chen, Leran
Xu, Chenghao
Chen, Cheng
Wang, Ting
Wu, Zining
Chen, Gong
Fu, Chenglong
Ye, Jing
Wang, Hongqiang
description To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons possess poor adaptability to different arm angles, tasks, and users. To solve this problem, we designed a lightweight (3.1 kg) upper limb exoskeleton capable of providing a self-adaptable support force to the upper limbs based on linkage mechanisms and gas springs and a tunable maximum force (10-130 N) based on small motors and sensors. By altering the supporting angle and distance, the force curvature is adjustable by motors to adapt to the load in the hands. Since the motors adjust the dimension of the mechanical structure, instead of directly supporting the arms, the power consumption is low (1.85 W), and the exoskeleton operation duration is very long (11 h) using a 3000 mAh battery. The experimental results show that the measured surface electromyogram activities reduced up to 43.84% and 46.23% for static and dynamic tests, respectively.
doi_str_mv 10.1109/TMECH.2024.3431884
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10629199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10629199</ieee_id><sourcerecordid>10_1109_TMECH_2024_3431884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-f66920ce3a273943b2f9b03f5fd34c6fcfaa006dc16a7187974111af26c440cb3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gHjID2jqzO50kz1KqbYQEaEFb2GznW2jzQfJgvrvTa0HL_MOMzzv4RHiFmGKCOZ-_byYL6cSJE0VKUxTOhMjNIQxIL2dDzukKiZSs0tx1ffvAEAIOBKvq6o9cMV1sKFs6qjxkY2ypt7Fme1DWe8m0aYOHPbc8XYSZeVuHz75OIdH23I3nKoiWnw1_QcfODT1tbjw9tDzzV-OxeZxsZ4v4-zlaTV_yGKHZELstTYSHCsrE2VIFdKbApSf-a0ip73z1gLorUNtE0wTkxAiWi-1IwJXqLGQp17XNX3fsc_brqxs950j5Ecp-a-U_Cgl_5MyQHcnqGTmf4CWBo1RP0RRXl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Hao ; Fang, Kaiwen ; Chen, Leran ; Xu, Chenghao ; Chen, Cheng ; Wang, Ting ; Wu, Zining ; Chen, Gong ; Fu, Chenglong ; Ye, Jing ; Wang, Hongqiang</creator><creatorcontrib>Liu, Hao ; Fang, Kaiwen ; Chen, Leran ; Xu, Chenghao ; Chen, Cheng ; Wang, Ting ; Wu, Zining ; Chen, Gong ; Fu, Chenglong ; Ye, Jing ; Wang, Hongqiang</creatorcontrib><description>To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons possess poor adaptability to different arm angles, tasks, and users. To solve this problem, we designed a lightweight (3.1 kg) upper limb exoskeleton capable of providing a self-adaptable support force to the upper limbs based on linkage mechanisms and gas springs and a tunable maximum force (10-130 N) based on small motors and sensors. By altering the supporting angle and distance, the force curvature is adjustable by motors to adapt to the load in the hands. Since the motors adjust the dimension of the mechanical structure, instead of directly supporting the arms, the power consumption is low (1.85 W), and the exoskeleton operation duration is very long (11 h) using a 3000 mAh battery. The experimental results show that the measured surface electromyogram activities reduced up to 43.84% and 46.23% for static and dynamic tests, respectively.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3431884</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Couplings ; Exoskeletons ; Force ; Linkage mechanism ; mechanism design ; metamorphic mechanism ; Motors ; physically assistive devices ; Robots ; Shoulder ; Springs ; wearable robots</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-08, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8955-5429 ; 0000-0002-7286-7514 ; 0000-0003-3587-7016 ; 0000-0001-7924-5868 ; 0000-0001-8493-1192 ; 0009-0007-2521-4493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10629199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10629199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Fang, Kaiwen</creatorcontrib><creatorcontrib>Chen, Leran</creatorcontrib><creatorcontrib>Xu, Chenghao</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Wu, Zining</creatorcontrib><creatorcontrib>Chen, Gong</creatorcontrib><creatorcontrib>Fu, Chenglong</creatorcontrib><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><title>Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons possess poor adaptability to different arm angles, tasks, and users. To solve this problem, we designed a lightweight (3.1 kg) upper limb exoskeleton capable of providing a self-adaptable support force to the upper limbs based on linkage mechanisms and gas springs and a tunable maximum force (10-130 N) based on small motors and sensors. By altering the supporting angle and distance, the force curvature is adjustable by motors to adapt to the load in the hands. Since the motors adjust the dimension of the mechanical structure, instead of directly supporting the arms, the power consumption is low (1.85 W), and the exoskeleton operation duration is very long (11 h) using a 3000 mAh battery. The experimental results show that the measured surface electromyogram activities reduced up to 43.84% and 46.23% for static and dynamic tests, respectively.</description><subject>Couplings</subject><subject>Exoskeletons</subject><subject>Force</subject><subject>Linkage mechanism</subject><subject>mechanism design</subject><subject>metamorphic mechanism</subject><subject>Motors</subject><subject>physically assistive devices</subject><subject>Robots</subject><subject>Shoulder</subject><subject>Springs</subject><subject>wearable robots</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFb_gHjID2jqzO50kz1KqbYQEaEFb2GznW2jzQfJgvrvTa0HL_MOMzzv4RHiFmGKCOZ-_byYL6cSJE0VKUxTOhMjNIQxIL2dDzukKiZSs0tx1ffvAEAIOBKvq6o9cMV1sKFs6qjxkY2ypt7Fme1DWe8m0aYOHPbc8XYSZeVuHz75OIdH23I3nKoiWnw1_QcfODT1tbjw9tDzzV-OxeZxsZ4v4-zlaTV_yGKHZELstTYSHCsrE2VIFdKbApSf-a0ip73z1gLorUNtE0wTkxAiWi-1IwJXqLGQp17XNX3fsc_brqxs950j5Ecp-a-U_Cgl_5MyQHcnqGTmf4CWBo1RP0RRXl4</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Liu, Hao</creator><creator>Fang, Kaiwen</creator><creator>Chen, Leran</creator><creator>Xu, Chenghao</creator><creator>Chen, Cheng</creator><creator>Wang, Ting</creator><creator>Wu, Zining</creator><creator>Chen, Gong</creator><creator>Fu, Chenglong</creator><creator>Ye, Jing</creator><creator>Wang, Hongqiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8955-5429</orcidid><orcidid>https://orcid.org/0000-0002-7286-7514</orcidid><orcidid>https://orcid.org/0000-0003-3587-7016</orcidid><orcidid>https://orcid.org/0000-0001-7924-5868</orcidid><orcidid>https://orcid.org/0000-0001-8493-1192</orcidid><orcidid>https://orcid.org/0009-0007-2521-4493</orcidid></search><sort><creationdate>20240808</creationdate><title>Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton</title><author>Liu, Hao ; Fang, Kaiwen ; Chen, Leran ; Xu, Chenghao ; Chen, Cheng ; Wang, Ting ; Wu, Zining ; Chen, Gong ; Fu, Chenglong ; Ye, Jing ; Wang, Hongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-f66920ce3a273943b2f9b03f5fd34c6fcfaa006dc16a7187974111af26c440cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Couplings</topic><topic>Exoskeletons</topic><topic>Force</topic><topic>Linkage mechanism</topic><topic>mechanism design</topic><topic>metamorphic mechanism</topic><topic>Motors</topic><topic>physically assistive devices</topic><topic>Robots</topic><topic>Shoulder</topic><topic>Springs</topic><topic>wearable robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Fang, Kaiwen</creatorcontrib><creatorcontrib>Chen, Leran</creatorcontrib><creatorcontrib>Xu, Chenghao</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Wu, Zining</creatorcontrib><creatorcontrib>Chen, Gong</creatorcontrib><creatorcontrib>Fu, Chenglong</creatorcontrib><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Hao</au><au>Fang, Kaiwen</au><au>Chen, Leran</au><au>Xu, Chenghao</au><au>Chen, Cheng</au><au>Wang, Ting</au><au>Wu, Zining</au><au>Chen, Gong</au><au>Fu, Chenglong</au><au>Ye, Jing</au><au>Wang, Hongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-08-08</date><risdate>2024</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons possess poor adaptability to different arm angles, tasks, and users. To solve this problem, we designed a lightweight (3.1 kg) upper limb exoskeleton capable of providing a self-adaptable support force to the upper limbs based on linkage mechanisms and gas springs and a tunable maximum force (10-130 N) based on small motors and sensors. By altering the supporting angle and distance, the force curvature is adjustable by motors to adapt to the load in the hands. Since the motors adjust the dimension of the mechanical structure, instead of directly supporting the arms, the power consumption is low (1.85 W), and the exoskeleton operation duration is very long (11 h) using a 3000 mAh battery. The experimental results show that the measured surface electromyogram activities reduced up to 43.84% and 46.23% for static and dynamic tests, respectively.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2024.3431884</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8955-5429</orcidid><orcidid>https://orcid.org/0000-0002-7286-7514</orcidid><orcidid>https://orcid.org/0000-0003-3587-7016</orcidid><orcidid>https://orcid.org/0000-0001-7924-5868</orcidid><orcidid>https://orcid.org/0000-0001-8493-1192</orcidid><orcidid>https://orcid.org/0009-0007-2521-4493</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2024-08, p.1-11
issn 1083-4435
1941-014X
language eng
recordid cdi_ieee_primary_10629199
source IEEE Electronic Library (IEL)
subjects Couplings
Exoskeletons
Force
Linkage mechanism
mechanism design
metamorphic mechanism
Motors
physically assistive devices
Robots
Shoulder
Springs
wearable robots
title Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20Long-Lasting,%20Untethered,%20Lightweight,%20Upper%20Limb%20Exoskeleton&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Liu,%20Hao&rft.date=2024-08-08&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3431884&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2024_3431884%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10629199&rfr_iscdi=true