Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton
To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons p...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2024-08, p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | |
creator | Liu, Hao Fang, Kaiwen Chen, Leran Xu, Chenghao Chen, Cheng Wang, Ting Wu, Zining Chen, Gong Fu, Chenglong Ye, Jing Wang, Hongqiang |
description | To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons possess poor adaptability to different arm angles, tasks, and users. To solve this problem, we designed a lightweight (3.1 kg) upper limb exoskeleton capable of providing a self-adaptable support force to the upper limbs based on linkage mechanisms and gas springs and a tunable maximum force (10-130 N) based on small motors and sensors. By altering the supporting angle and distance, the force curvature is adjustable by motors to adapt to the load in the hands. Since the motors adjust the dimension of the mechanical structure, instead of directly supporting the arms, the power consumption is low (1.85 W), and the exoskeleton operation duration is very long (11 h) using a 3000 mAh battery. The experimental results show that the measured surface electromyogram activities reduced up to 43.84% and 46.23% for static and dynamic tests, respectively. |
doi_str_mv | 10.1109/TMECH.2024.3431884 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10629199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10629199</ieee_id><sourcerecordid>10_1109_TMECH_2024_3431884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-f66920ce3a273943b2f9b03f5fd34c6fcfaa006dc16a7187974111af26c440cb3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gHjID2jqzO50kz1KqbYQEaEFb2GznW2jzQfJgvrvTa0HL_MOMzzv4RHiFmGKCOZ-_byYL6cSJE0VKUxTOhMjNIQxIL2dDzukKiZSs0tx1ffvAEAIOBKvq6o9cMV1sKFs6qjxkY2ypt7Fme1DWe8m0aYOHPbc8XYSZeVuHz75OIdH23I3nKoiWnw1_QcfODT1tbjw9tDzzV-OxeZxsZ4v4-zlaTV_yGKHZELstTYSHCsrE2VIFdKbApSf-a0ip73z1gLorUNtE0wTkxAiWi-1IwJXqLGQp17XNX3fsc_brqxs950j5Ecp-a-U_Cgl_5MyQHcnqGTmf4CWBo1RP0RRXl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Hao ; Fang, Kaiwen ; Chen, Leran ; Xu, Chenghao ; Chen, Cheng ; Wang, Ting ; Wu, Zining ; Chen, Gong ; Fu, Chenglong ; Ye, Jing ; Wang, Hongqiang</creator><creatorcontrib>Liu, Hao ; Fang, Kaiwen ; Chen, Leran ; Xu, Chenghao ; Chen, Cheng ; Wang, Ting ; Wu, Zining ; Chen, Gong ; Fu, Chenglong ; Ye, Jing ; Wang, Hongqiang</creatorcontrib><description>To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons possess poor adaptability to different arm angles, tasks, and users. To solve this problem, we designed a lightweight (3.1 kg) upper limb exoskeleton capable of providing a self-adaptable support force to the upper limbs based on linkage mechanisms and gas springs and a tunable maximum force (10-130 N) based on small motors and sensors. By altering the supporting angle and distance, the force curvature is adjustable by motors to adapt to the load in the hands. Since the motors adjust the dimension of the mechanical structure, instead of directly supporting the arms, the power consumption is low (1.85 W), and the exoskeleton operation duration is very long (11 h) using a 3000 mAh battery. The experimental results show that the measured surface electromyogram activities reduced up to 43.84% and 46.23% for static and dynamic tests, respectively.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3431884</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Couplings ; Exoskeletons ; Force ; Linkage mechanism ; mechanism design ; metamorphic mechanism ; Motors ; physically assistive devices ; Robots ; Shoulder ; Springs ; wearable robots</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-08, p.1-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8955-5429 ; 0000-0002-7286-7514 ; 0000-0003-3587-7016 ; 0000-0001-7924-5868 ; 0000-0001-8493-1192 ; 0009-0007-2521-4493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10629199$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10629199$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Fang, Kaiwen</creatorcontrib><creatorcontrib>Chen, Leran</creatorcontrib><creatorcontrib>Xu, Chenghao</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Wu, Zining</creatorcontrib><creatorcontrib>Chen, Gong</creatorcontrib><creatorcontrib>Fu, Chenglong</creatorcontrib><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><title>Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons possess poor adaptability to different arm angles, tasks, and users. To solve this problem, we designed a lightweight (3.1 kg) upper limb exoskeleton capable of providing a self-adaptable support force to the upper limbs based on linkage mechanisms and gas springs and a tunable maximum force (10-130 N) based on small motors and sensors. By altering the supporting angle and distance, the force curvature is adjustable by motors to adapt to the load in the hands. Since the motors adjust the dimension of the mechanical structure, instead of directly supporting the arms, the power consumption is low (1.85 W), and the exoskeleton operation duration is very long (11 h) using a 3000 mAh battery. The experimental results show that the measured surface electromyogram activities reduced up to 43.84% and 46.23% for static and dynamic tests, respectively.</description><subject>Couplings</subject><subject>Exoskeletons</subject><subject>Force</subject><subject>Linkage mechanism</subject><subject>mechanism design</subject><subject>metamorphic mechanism</subject><subject>Motors</subject><subject>physically assistive devices</subject><subject>Robots</subject><subject>Shoulder</subject><subject>Springs</subject><subject>wearable robots</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFb_gHjID2jqzO50kz1KqbYQEaEFb2GznW2jzQfJgvrvTa0HL_MOMzzv4RHiFmGKCOZ-_byYL6cSJE0VKUxTOhMjNIQxIL2dDzukKiZSs0tx1ffvAEAIOBKvq6o9cMV1sKFs6qjxkY2ypt7Fme1DWe8m0aYOHPbc8XYSZeVuHz75OIdH23I3nKoiWnw1_QcfODT1tbjw9tDzzV-OxeZxsZ4v4-zlaTV_yGKHZELstTYSHCsrE2VIFdKbApSf-a0ip73z1gLorUNtE0wTkxAiWi-1IwJXqLGQp17XNX3fsc_brqxs950j5Ecp-a-U_Cgl_5MyQHcnqGTmf4CWBo1RP0RRXl4</recordid><startdate>20240808</startdate><enddate>20240808</enddate><creator>Liu, Hao</creator><creator>Fang, Kaiwen</creator><creator>Chen, Leran</creator><creator>Xu, Chenghao</creator><creator>Chen, Cheng</creator><creator>Wang, Ting</creator><creator>Wu, Zining</creator><creator>Chen, Gong</creator><creator>Fu, Chenglong</creator><creator>Ye, Jing</creator><creator>Wang, Hongqiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8955-5429</orcidid><orcidid>https://orcid.org/0000-0002-7286-7514</orcidid><orcidid>https://orcid.org/0000-0003-3587-7016</orcidid><orcidid>https://orcid.org/0000-0001-7924-5868</orcidid><orcidid>https://orcid.org/0000-0001-8493-1192</orcidid><orcidid>https://orcid.org/0009-0007-2521-4493</orcidid></search><sort><creationdate>20240808</creationdate><title>Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton</title><author>Liu, Hao ; Fang, Kaiwen ; Chen, Leran ; Xu, Chenghao ; Chen, Cheng ; Wang, Ting ; Wu, Zining ; Chen, Gong ; Fu, Chenglong ; Ye, Jing ; Wang, Hongqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-f66920ce3a273943b2f9b03f5fd34c6fcfaa006dc16a7187974111af26c440cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Couplings</topic><topic>Exoskeletons</topic><topic>Force</topic><topic>Linkage mechanism</topic><topic>mechanism design</topic><topic>metamorphic mechanism</topic><topic>Motors</topic><topic>physically assistive devices</topic><topic>Robots</topic><topic>Shoulder</topic><topic>Springs</topic><topic>wearable robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Fang, Kaiwen</creatorcontrib><creatorcontrib>Chen, Leran</creatorcontrib><creatorcontrib>Xu, Chenghao</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Wu, Zining</creatorcontrib><creatorcontrib>Chen, Gong</creatorcontrib><creatorcontrib>Fu, Chenglong</creatorcontrib><creatorcontrib>Ye, Jing</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Hao</au><au>Fang, Kaiwen</au><au>Chen, Leran</au><au>Xu, Chenghao</au><au>Chen, Cheng</au><au>Wang, Ting</au><au>Wu, Zining</au><au>Chen, Gong</au><au>Fu, Chenglong</au><au>Ye, Jing</au><au>Wang, Hongqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-08-08</date><risdate>2024</risdate><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>To prevent muscle fatigue or disorder due to long-term or repetitive arm-lifting in scenarios that heavily rely on manual operations, various exoskeletons have been developed previously. However, the exoskeletons with motors suffer from heavy mass and high cost, while previous passive exoskeletons possess poor adaptability to different arm angles, tasks, and users. To solve this problem, we designed a lightweight (3.1 kg) upper limb exoskeleton capable of providing a self-adaptable support force to the upper limbs based on linkage mechanisms and gas springs and a tunable maximum force (10-130 N) based on small motors and sensors. By altering the supporting angle and distance, the force curvature is adjustable by motors to adapt to the load in the hands. Since the motors adjust the dimension of the mechanical structure, instead of directly supporting the arms, the power consumption is low (1.85 W), and the exoskeleton operation duration is very long (11 h) using a 3000 mAh battery. The experimental results show that the measured surface electromyogram activities reduced up to 43.84% and 46.23% for static and dynamic tests, respectively.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2024.3431884</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8955-5429</orcidid><orcidid>https://orcid.org/0000-0002-7286-7514</orcidid><orcidid>https://orcid.org/0000-0003-3587-7016</orcidid><orcidid>https://orcid.org/0000-0001-7924-5868</orcidid><orcidid>https://orcid.org/0000-0001-8493-1192</orcidid><orcidid>https://orcid.org/0009-0007-2521-4493</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-08, p.1-11 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_10629199 |
source | IEEE Electronic Library (IEL) |
subjects | Couplings Exoskeletons Force Linkage mechanism mechanism design metamorphic mechanism Motors physically assistive devices Robots Shoulder Springs wearable robots |
title | Implementation of a Long-Lasting, Untethered, Lightweight, Upper Limb Exoskeleton |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20a%20Long-Lasting,%20Untethered,%20Lightweight,%20Upper%20Limb%20Exoskeleton&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Liu,%20Hao&rft.date=2024-08-08&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3431884&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2024_3431884%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10629199&rfr_iscdi=true |