A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm
The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, bio...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.108975-108985 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108985 |
---|---|
container_issue | |
container_start_page | 108975 |
container_title | IEEE access |
container_volume | 12 |
creator | Wu, Xiaojin Liu, Haixian Bai, Fan Lu, Xudong Gao, Yuan Li, Lun |
description | The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, biological tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect the internal information of the target of detection, and it has become the focus of current research. This study carried out research on 3D reconstruction and object detection algorithms based on terahertz images. In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore the context information between the cost layers and have unsatisfactory reconstruction effects when used on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here. A structured object recognition algorithm was designed to provide theoretical support for subsequent terahertz image-based object detection algorithms. |
doi_str_mv | 10.1109/ACCESS.2024.3439358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10623681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623681</ieee_id><doaj_id>oai_doaj_org_article_ea02e158f435479699bf23849f0b3e85</doaj_id><sourcerecordid>3096239704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-942029e02d04ca77364a9666f8e0a0f2ef38d6edb93d64aac7343cb138591b763</originalsourceid><addsrcrecordid>eNpNUcFuGjEQXVWNlIjkC5qDpZ6htsfrtY90CwEpbaRCe7W8u2NYBJja5pB-fU02qpjLjN7MezOjVxSfGJ0wRvWXaV3PVqsJp1xMQICGUn0o7jiTegwlyI9X9W3xEOOO5lAZKqu7YjEl8I38xNYfYwrnNvX-SLwjawx2iyH9JcuD3WAkX23EjuRm2iKZ1-vvv1c_MJHpfuNDn7aH--LG2X3Eh_c8Kn7NZ-t6MX5-eVrW0-dxy5VOYy3ynRop76hobVWBFFZLKZ1Caqnj6EB1ErtGQ5dbtq3yS23DQJWaNZWEUbEcdDtvd-YU-oMNr8bb3rwBPmyMDalv92jQUo6sVE5AKSottW4cByW0ow2gKrPW50HrFPyfM8Zkdv4cjvl8A1RLDrqiIk_BMNUGH2NA938ro-bigBkcMBcHzLsDmfU4sHpEvGJkVakY_ANqxH67</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096239704</pqid></control><display><type>article</type><title>A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wu, Xiaojin ; Liu, Haixian ; Bai, Fan ; Lu, Xudong ; Gao, Yuan ; Li, Lun</creator><creatorcontrib>Wu, Xiaojin ; Liu, Haixian ; Bai, Fan ; Lu, Xudong ; Gao, Yuan ; Li, Lun</creatorcontrib><description>The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, biological tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect the internal information of the target of detection, and it has become the focus of current research. This study carried out research on 3D reconstruction and object detection algorithms based on terahertz images. In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore the context information between the cost layers and have unsatisfactory reconstruction effects when used on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here. A structured object recognition algorithm was designed to provide theoretical support for subsequent terahertz image-based object detection algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3439358</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorption spectra ; Algorithms ; Costs ; Electromagnetic measurements ; Electromagnetic radiation ; FCTMVSNet ; Feature extraction ; Image reconstruction ; Imaging ; Infrared imagery ; Microwaves ; Military technology ; Nondestructive testing ; Object recognition ; Target detection ; Terahertz frequencies ; Terahertz imaging ; Terahertz wave imaging ; Three-dimensional displays ; three-dimensional reconstruction ; Tissues ; Transformers ; transmission type ; Unstructured data</subject><ispartof>IEEE access, 2024, Vol.12, p.108975-108985</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-942029e02d04ca77364a9666f8e0a0f2ef38d6edb93d64aac7343cb138591b763</cites><orcidid>0000-0001-6027-4423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623681$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wu, Xiaojin</creatorcontrib><creatorcontrib>Liu, Haixian</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Lu, Xudong</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Li, Lun</creatorcontrib><title>A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, biological tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect the internal information of the target of detection, and it has become the focus of current research. This study carried out research on 3D reconstruction and object detection algorithms based on terahertz images. In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore the context information between the cost layers and have unsatisfactory reconstruction effects when used on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here. A structured object recognition algorithm was designed to provide theoretical support for subsequent terahertz image-based object detection algorithms.</description><subject>Absorption spectra</subject><subject>Algorithms</subject><subject>Costs</subject><subject>Electromagnetic measurements</subject><subject>Electromagnetic radiation</subject><subject>FCTMVSNet</subject><subject>Feature extraction</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Infrared imagery</subject><subject>Microwaves</subject><subject>Military technology</subject><subject>Nondestructive testing</subject><subject>Object recognition</subject><subject>Target detection</subject><subject>Terahertz frequencies</subject><subject>Terahertz imaging</subject><subject>Terahertz wave imaging</subject><subject>Three-dimensional displays</subject><subject>three-dimensional reconstruction</subject><subject>Tissues</subject><subject>Transformers</subject><subject>transmission type</subject><subject>Unstructured data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuGjEQXVWNlIjkC5qDpZ6htsfrtY90CwEpbaRCe7W8u2NYBJja5pB-fU02qpjLjN7MezOjVxSfGJ0wRvWXaV3PVqsJp1xMQICGUn0o7jiTegwlyI9X9W3xEOOO5lAZKqu7YjEl8I38xNYfYwrnNvX-SLwjawx2iyH9JcuD3WAkX23EjuRm2iKZ1-vvv1c_MJHpfuNDn7aH--LG2X3Eh_c8Kn7NZ-t6MX5-eVrW0-dxy5VOYy3ynRop76hobVWBFFZLKZ1Caqnj6EB1ErtGQ5dbtq3yS23DQJWaNZWEUbEcdDtvd-YU-oMNr8bb3rwBPmyMDalv92jQUo6sVE5AKSottW4cByW0ow2gKrPW50HrFPyfM8Zkdv4cjvl8A1RLDrqiIk_BMNUGH2NA938ro-bigBkcMBcHzLsDmfU4sHpEvGJkVakY_ANqxH67</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wu, Xiaojin</creator><creator>Liu, Haixian</creator><creator>Bai, Fan</creator><creator>Lu, Xudong</creator><creator>Gao, Yuan</creator><creator>Li, Lun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6027-4423</orcidid></search><sort><creationdate>2024</creationdate><title>A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm</title><author>Wu, Xiaojin ; Liu, Haixian ; Bai, Fan ; Lu, Xudong ; Gao, Yuan ; Li, Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-942029e02d04ca77364a9666f8e0a0f2ef38d6edb93d64aac7343cb138591b763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Algorithms</topic><topic>Costs</topic><topic>Electromagnetic measurements</topic><topic>Electromagnetic radiation</topic><topic>FCTMVSNet</topic><topic>Feature extraction</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Infrared imagery</topic><topic>Microwaves</topic><topic>Military technology</topic><topic>Nondestructive testing</topic><topic>Object recognition</topic><topic>Target detection</topic><topic>Terahertz frequencies</topic><topic>Terahertz imaging</topic><topic>Terahertz wave imaging</topic><topic>Three-dimensional displays</topic><topic>three-dimensional reconstruction</topic><topic>Tissues</topic><topic>Transformers</topic><topic>transmission type</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaojin</creatorcontrib><creatorcontrib>Liu, Haixian</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Lu, Xudong</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Li, Lun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaojin</au><au>Liu, Haixian</au><au>Bai, Fan</au><au>Lu, Xudong</au><au>Gao, Yuan</au><au>Li, Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>108975</spage><epage>108985</epage><pages>108975-108985</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, biological tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect the internal information of the target of detection, and it has become the focus of current research. This study carried out research on 3D reconstruction and object detection algorithms based on terahertz images. In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore the context information between the cost layers and have unsatisfactory reconstruction effects when used on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here. A structured object recognition algorithm was designed to provide theoretical support for subsequent terahertz image-based object detection algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3439358</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6027-4423</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.108975-108985 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10623681 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Absorption spectra Algorithms Costs Electromagnetic measurements Electromagnetic radiation FCTMVSNet Feature extraction Image reconstruction Imaging Infrared imagery Microwaves Military technology Nondestructive testing Object recognition Target detection Terahertz frequencies Terahertz imaging Terahertz wave imaging Three-dimensional displays three-dimensional reconstruction Tissues Transformers transmission type Unstructured data |
title | A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20Reconstruction%20of%20Terahertz%20Images%20Based%20on%20the%20FCTMVSNet%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Wu,%20Xiaojin&rft.date=2024&rft.volume=12&rft.spage=108975&rft.epage=108985&rft.pages=108975-108985&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3439358&rft_dat=%3Cproquest_ieee_%3E3096239704%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096239704&rft_id=info:pmid/&rft_ieee_id=10623681&rft_doaj_id=oai_doaj_org_article_ea02e158f435479699bf23849f0b3e85&rfr_iscdi=true |