A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm

The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.108975-108985
Hauptverfasser: Wu, Xiaojin, Liu, Haixian, Bai, Fan, Lu, Xudong, Gao, Yuan, Li, Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108985
container_issue
container_start_page 108975
container_title IEEE access
container_volume 12
creator Wu, Xiaojin
Liu, Haixian
Bai, Fan
Lu, Xudong
Gao, Yuan
Li, Lun
description The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, biological tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect the internal information of the target of detection, and it has become the focus of current research. This study carried out research on 3D reconstruction and object detection algorithms based on terahertz images. In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore the context information between the cost layers and have unsatisfactory reconstruction effects when used on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here. A structured object recognition algorithm was designed to provide theoretical support for subsequent terahertz image-based object detection algorithms.
doi_str_mv 10.1109/ACCESS.2024.3439358
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10623681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623681</ieee_id><doaj_id>oai_doaj_org_article_ea02e158f435479699bf23849f0b3e85</doaj_id><sourcerecordid>3096239704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-942029e02d04ca77364a9666f8e0a0f2ef38d6edb93d64aac7343cb138591b763</originalsourceid><addsrcrecordid>eNpNUcFuGjEQXVWNlIjkC5qDpZ6htsfrtY90CwEpbaRCe7W8u2NYBJja5pB-fU02qpjLjN7MezOjVxSfGJ0wRvWXaV3PVqsJp1xMQICGUn0o7jiTegwlyI9X9W3xEOOO5lAZKqu7YjEl8I38xNYfYwrnNvX-SLwjawx2iyH9JcuD3WAkX23EjuRm2iKZ1-vvv1c_MJHpfuNDn7aH--LG2X3Eh_c8Kn7NZ-t6MX5-eVrW0-dxy5VOYy3ynRop76hobVWBFFZLKZ1Caqnj6EB1ErtGQ5dbtq3yS23DQJWaNZWEUbEcdDtvd-YU-oMNr8bb3rwBPmyMDalv92jQUo6sVE5AKSottW4cByW0ow2gKrPW50HrFPyfM8Zkdv4cjvl8A1RLDrqiIk_BMNUGH2NA938ro-bigBkcMBcHzLsDmfU4sHpEvGJkVakY_ANqxH67</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096239704</pqid></control><display><type>article</type><title>A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wu, Xiaojin ; Liu, Haixian ; Bai, Fan ; Lu, Xudong ; Gao, Yuan ; Li, Lun</creator><creatorcontrib>Wu, Xiaojin ; Liu, Haixian ; Bai, Fan ; Lu, Xudong ; Gao, Yuan ; Li, Lun</creatorcontrib><description>The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, biological tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect the internal information of the target of detection, and it has become the focus of current research. This study carried out research on 3D reconstruction and object detection algorithms based on terahertz images. In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore the context information between the cost layers and have unsatisfactory reconstruction effects when used on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here. A structured object recognition algorithm was designed to provide theoretical support for subsequent terahertz image-based object detection algorithms.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3439358</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Absorption spectra ; Algorithms ; Costs ; Electromagnetic measurements ; Electromagnetic radiation ; FCTMVSNet ; Feature extraction ; Image reconstruction ; Imaging ; Infrared imagery ; Microwaves ; Military technology ; Nondestructive testing ; Object recognition ; Target detection ; Terahertz frequencies ; Terahertz imaging ; Terahertz wave imaging ; Three-dimensional displays ; three-dimensional reconstruction ; Tissues ; Transformers ; transmission type ; Unstructured data</subject><ispartof>IEEE access, 2024, Vol.12, p.108975-108985</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-942029e02d04ca77364a9666f8e0a0f2ef38d6edb93d64aac7343cb138591b763</cites><orcidid>0000-0001-6027-4423</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623681$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Wu, Xiaojin</creatorcontrib><creatorcontrib>Liu, Haixian</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Lu, Xudong</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Li, Lun</creatorcontrib><title>A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description>The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, biological tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect the internal information of the target of detection, and it has become the focus of current research. This study carried out research on 3D reconstruction and object detection algorithms based on terahertz images. In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore the context information between the cost layers and have unsatisfactory reconstruction effects when used on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here. A structured object recognition algorithm was designed to provide theoretical support for subsequent terahertz image-based object detection algorithms.</description><subject>Absorption spectra</subject><subject>Algorithms</subject><subject>Costs</subject><subject>Electromagnetic measurements</subject><subject>Electromagnetic radiation</subject><subject>FCTMVSNet</subject><subject>Feature extraction</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Infrared imagery</subject><subject>Microwaves</subject><subject>Military technology</subject><subject>Nondestructive testing</subject><subject>Object recognition</subject><subject>Target detection</subject><subject>Terahertz frequencies</subject><subject>Terahertz imaging</subject><subject>Terahertz wave imaging</subject><subject>Three-dimensional displays</subject><subject>three-dimensional reconstruction</subject><subject>Tissues</subject><subject>Transformers</subject><subject>transmission type</subject><subject>Unstructured data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFuGjEQXVWNlIjkC5qDpZ6htsfrtY90CwEpbaRCe7W8u2NYBJja5pB-fU02qpjLjN7MezOjVxSfGJ0wRvWXaV3PVqsJp1xMQICGUn0o7jiTegwlyI9X9W3xEOOO5lAZKqu7YjEl8I38xNYfYwrnNvX-SLwjawx2iyH9JcuD3WAkX23EjuRm2iKZ1-vvv1c_MJHpfuNDn7aH--LG2X3Eh_c8Kn7NZ-t6MX5-eVrW0-dxy5VOYy3ynRop76hobVWBFFZLKZ1Caqnj6EB1ErtGQ5dbtq3yS23DQJWaNZWEUbEcdDtvd-YU-oMNr8bb3rwBPmyMDalv92jQUo6sVE5AKSottW4cByW0ow2gKrPW50HrFPyfM8Zkdv4cjvl8A1RLDrqiIk_BMNUGH2NA938ro-bigBkcMBcHzLsDmfU4sHpEvGJkVakY_ANqxH67</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wu, Xiaojin</creator><creator>Liu, Haixian</creator><creator>Bai, Fan</creator><creator>Lu, Xudong</creator><creator>Gao, Yuan</creator><creator>Li, Lun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6027-4423</orcidid></search><sort><creationdate>2024</creationdate><title>A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm</title><author>Wu, Xiaojin ; Liu, Haixian ; Bai, Fan ; Lu, Xudong ; Gao, Yuan ; Li, Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-942029e02d04ca77364a9666f8e0a0f2ef38d6edb93d64aac7343cb138591b763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Algorithms</topic><topic>Costs</topic><topic>Electromagnetic measurements</topic><topic>Electromagnetic radiation</topic><topic>FCTMVSNet</topic><topic>Feature extraction</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Infrared imagery</topic><topic>Microwaves</topic><topic>Military technology</topic><topic>Nondestructive testing</topic><topic>Object recognition</topic><topic>Target detection</topic><topic>Terahertz frequencies</topic><topic>Terahertz imaging</topic><topic>Terahertz wave imaging</topic><topic>Three-dimensional displays</topic><topic>three-dimensional reconstruction</topic><topic>Tissues</topic><topic>Transformers</topic><topic>transmission type</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiaojin</creatorcontrib><creatorcontrib>Liu, Haixian</creatorcontrib><creatorcontrib>Bai, Fan</creatorcontrib><creatorcontrib>Lu, Xudong</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Li, Lun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiaojin</au><au>Liu, Haixian</au><au>Bai, Fan</au><au>Lu, Xudong</au><au>Gao, Yuan</au><au>Li, Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>108975</spage><epage>108985</epage><pages>108975-108985</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The terahertz range, as a type of electromagnetic wave with wavelengths between microwaves and the infrared band, has the characteristics of penetration, low energy and a stable absorption spectrum of specific substances, and is widely used in non-destructive testing, human security inspections, biological tissue diagnoses and military detection. In particular, terahertz wave 3D imaging technology can detect the internal information of the target of detection, and it has become the focus of current research. This study carried out research on 3D reconstruction and object detection algorithms based on terahertz images. In view of the problem that the MVS (Multi-ViewStereo) series of 3D reconstruction algorithms ignore the context information between the cost layers and have unsatisfactory reconstruction effects when used on complex regions, an improved MVSNet 3D reconstruction algorithm FCTMVSNet(Feature and Cost Transformer Depth Inference for Unstructured Multi-view Stereo) based on Transformer is proposed here. A structured object recognition algorithm was designed to provide theoretical support for subsequent terahertz image-based object detection algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3439358</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6027-4423</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.108975-108985
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10623681
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Absorption spectra
Algorithms
Costs
Electromagnetic measurements
Electromagnetic radiation
FCTMVSNet
Feature extraction
Image reconstruction
Imaging
Infrared imagery
Microwaves
Military technology
Nondestructive testing
Object recognition
Target detection
Terahertz frequencies
Terahertz imaging
Terahertz wave imaging
Three-dimensional displays
three-dimensional reconstruction
Tissues
Transformers
transmission type
Unstructured data
title A 3D Reconstruction of Terahertz Images Based on the FCTMVSNet Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20Reconstruction%20of%20Terahertz%20Images%20Based%20on%20the%20FCTMVSNet%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Wu,%20Xiaojin&rft.date=2024&rft.volume=12&rft.spage=108975&rft.epage=108985&rft.pages=108975-108985&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3439358&rft_dat=%3Cproquest_ieee_%3E3096239704%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096239704&rft_id=info:pmid/&rft_ieee_id=10623681&rft_doaj_id=oai_doaj_org_article_ea02e158f435479699bf23849f0b3e85&rfr_iscdi=true