Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas

Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-11, Vol.25 (11), p.17122-17133
Hauptverfasser: Ishii, Keita, Ono, Shunsuke, Masago, Takeshi, Ishizuki, Masamu, Mori, Teppei, Hanatsuka, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17133
container_issue 11
container_start_page 17122
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Ishii, Keita
Ono, Shunsuke
Masago, Takeshi
Ishizuki, Masamu
Mori, Teppei
Hanatsuka, Yasushi
description Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather information systems. Additionally, few methods have been proposed for predicting road surface conditions specifically in urban areas, where roads frequently experience shading from surrounding buildings. This study proposes a statistical approach for predicting road surface temperature and conditions in urban road networks. The complicated accumulated distribution of solar radiation along each road is calculated and used as an effective explanatory variable that considers the complex shading effects of nearby structures. The proposed model adopts a Bayesian spatiotemporal hierarchical framework for predicting road surface temperature using a solar radiation variable. Furthermore, a spatial machine learning model is implemented to estimate road surface conditions. The model classifies icy road conditions into six distinct types, achieving a sensitivity of 0.7712 and a balanced accuracy of 0.8637. Ultimately, the model provides significant information required for decision-making processes aimed at ensuring efficient winter road management. These results indicate that the applicability of the proposed approach can extend beyond the studied area, demonstrating its potential for broader implementation.
doi_str_mv 10.1109/TITS.2024.3433004
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10623537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623537</ieee_id><sourcerecordid>10_1109_TITS_2024_3433004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-424764a392231dba1f8a026ec42f1b7c692c632b2e9720133786af8f46e341b23</originalsourceid><addsrcrecordid>eNpNkMFKAzEYhIMoWKsPIHjIC2zNn2Szu8dSrBYqirs9eFqyyR-JtNmSbAXf3i7twdMMw8wcPkLugc0AWPXYrJp6xhmXMyGFYExekAnkeZkxBupy9FxmFcvZNblJ6fuYyhxgQj6XPmBWG71FS98jWm8G_4P0tbe49eGL9o5-9NrS-hCdNkgXfbB-8H1IVAdLG9ztMerhEJH6QDex04HOI-p0S66c3ia8O-uUbJZPzeIlW789rxbzdWZAlkMmuSyU1KLiXIDtNLhSM67QSO6gK4yquFGCdxyrgjMQoiiVdqWTCoWEjospgdOviX1KEV27j36n428LrB3ZtCObdmTTntkcNw-njUfEf33FRS4K8Qcyd19h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas</title><source>IEEE Electronic Library (IEL)</source><creator>Ishii, Keita ; Ono, Shunsuke ; Masago, Takeshi ; Ishizuki, Masamu ; Mori, Teppei ; Hanatsuka, Yasushi</creator><creatorcontrib>Ishii, Keita ; Ono, Shunsuke ; Masago, Takeshi ; Ishizuki, Masamu ; Mori, Teppei ; Hanatsuka, Yasushi</creatorcontrib><description>Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather information systems. Additionally, few methods have been proposed for predicting road surface conditions specifically in urban areas, where roads frequently experience shading from surrounding buildings. This study proposes a statistical approach for predicting road surface temperature and conditions in urban road networks. The complicated accumulated distribution of solar radiation along each road is calculated and used as an effective explanatory variable that considers the complex shading effects of nearby structures. The proposed model adopts a Bayesian spatiotemporal hierarchical framework for predicting road surface temperature using a solar radiation variable. Furthermore, a spatial machine learning model is implemented to estimate road surface conditions. The model classifies icy road conditions into six distinct types, achieving a sensitivity of 0.7712 and a balanced accuracy of 0.8637. Ultimately, the model provides significant information required for decision-making processes aimed at ensuring efficient winter road management. These results indicate that the applicability of the proposed approach can extend beyond the studied area, demonstrating its potential for broader implementation.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3433004</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian hierarchical model ; Data models ; machine learning ; Maintenance ; Meteorology ; Predictive models ; road surface conditions ; Road surface temperature ; Roads ; Solar radiation ; spatiotemporal model ; Urban areas ; winter road operations</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17122-17133</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-424764a392231dba1f8a026ec42f1b7c692c632b2e9720133786af8f46e341b23</cites><orcidid>0009-0003-6745-6600 ; 0009-0002-0154-8548 ; 0000-0001-7890-5131 ; 0009-0000-8369-261X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623537$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Ishii, Keita</creatorcontrib><creatorcontrib>Ono, Shunsuke</creatorcontrib><creatorcontrib>Masago, Takeshi</creatorcontrib><creatorcontrib>Ishizuki, Masamu</creatorcontrib><creatorcontrib>Mori, Teppei</creatorcontrib><creatorcontrib>Hanatsuka, Yasushi</creatorcontrib><title>Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather information systems. Additionally, few methods have been proposed for predicting road surface conditions specifically in urban areas, where roads frequently experience shading from surrounding buildings. This study proposes a statistical approach for predicting road surface temperature and conditions in urban road networks. The complicated accumulated distribution of solar radiation along each road is calculated and used as an effective explanatory variable that considers the complex shading effects of nearby structures. The proposed model adopts a Bayesian spatiotemporal hierarchical framework for predicting road surface temperature using a solar radiation variable. Furthermore, a spatial machine learning model is implemented to estimate road surface conditions. The model classifies icy road conditions into six distinct types, achieving a sensitivity of 0.7712 and a balanced accuracy of 0.8637. Ultimately, the model provides significant information required for decision-making processes aimed at ensuring efficient winter road management. These results indicate that the applicability of the proposed approach can extend beyond the studied area, demonstrating its potential for broader implementation.</description><subject>Bayesian hierarchical model</subject><subject>Data models</subject><subject>machine learning</subject><subject>Maintenance</subject><subject>Meteorology</subject><subject>Predictive models</subject><subject>road surface conditions</subject><subject>Road surface temperature</subject><subject>Roads</subject><subject>Solar radiation</subject><subject>spatiotemporal model</subject><subject>Urban areas</subject><subject>winter road operations</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEYhIMoWKsPIHjIC2zNn2Szu8dSrBYqirs9eFqyyR-JtNmSbAXf3i7twdMMw8wcPkLugc0AWPXYrJp6xhmXMyGFYExekAnkeZkxBupy9FxmFcvZNblJ6fuYyhxgQj6XPmBWG71FS98jWm8G_4P0tbe49eGL9o5-9NrS-hCdNkgXfbB-8H1IVAdLG9ztMerhEJH6QDex04HOI-p0S66c3ia8O-uUbJZPzeIlW789rxbzdWZAlkMmuSyU1KLiXIDtNLhSM67QSO6gK4yquFGCdxyrgjMQoiiVdqWTCoWEjospgdOviX1KEV27j36n428LrB3ZtCObdmTTntkcNw-njUfEf33FRS4K8Qcyd19h</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ishii, Keita</creator><creator>Ono, Shunsuke</creator><creator>Masago, Takeshi</creator><creator>Ishizuki, Masamu</creator><creator>Mori, Teppei</creator><creator>Hanatsuka, Yasushi</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-6745-6600</orcidid><orcidid>https://orcid.org/0009-0002-0154-8548</orcidid><orcidid>https://orcid.org/0000-0001-7890-5131</orcidid><orcidid>https://orcid.org/0009-0000-8369-261X</orcidid></search><sort><creationdate>202411</creationdate><title>Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas</title><author>Ishii, Keita ; Ono, Shunsuke ; Masago, Takeshi ; Ishizuki, Masamu ; Mori, Teppei ; Hanatsuka, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-424764a392231dba1f8a026ec42f1b7c692c632b2e9720133786af8f46e341b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian hierarchical model</topic><topic>Data models</topic><topic>machine learning</topic><topic>Maintenance</topic><topic>Meteorology</topic><topic>Predictive models</topic><topic>road surface conditions</topic><topic>Road surface temperature</topic><topic>Roads</topic><topic>Solar radiation</topic><topic>spatiotemporal model</topic><topic>Urban areas</topic><topic>winter road operations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Keita</creatorcontrib><creatorcontrib>Ono, Shunsuke</creatorcontrib><creatorcontrib>Masago, Takeshi</creatorcontrib><creatorcontrib>Ishizuki, Masamu</creatorcontrib><creatorcontrib>Mori, Teppei</creatorcontrib><creatorcontrib>Hanatsuka, Yasushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Keita</au><au>Ono, Shunsuke</au><au>Masago, Takeshi</au><au>Ishizuki, Masamu</au><au>Mori, Teppei</au><au>Hanatsuka, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>17122</spage><epage>17133</epage><pages>17122-17133</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather information systems. Additionally, few methods have been proposed for predicting road surface conditions specifically in urban areas, where roads frequently experience shading from surrounding buildings. This study proposes a statistical approach for predicting road surface temperature and conditions in urban road networks. The complicated accumulated distribution of solar radiation along each road is calculated and used as an effective explanatory variable that considers the complex shading effects of nearby structures. The proposed model adopts a Bayesian spatiotemporal hierarchical framework for predicting road surface temperature using a solar radiation variable. Furthermore, a spatial machine learning model is implemented to estimate road surface conditions. The model classifies icy road conditions into six distinct types, achieving a sensitivity of 0.7712 and a balanced accuracy of 0.8637. Ultimately, the model provides significant information required for decision-making processes aimed at ensuring efficient winter road management. These results indicate that the applicability of the proposed approach can extend beyond the studied area, demonstrating its potential for broader implementation.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3433004</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0003-6745-6600</orcidid><orcidid>https://orcid.org/0009-0002-0154-8548</orcidid><orcidid>https://orcid.org/0000-0001-7890-5131</orcidid><orcidid>https://orcid.org/0009-0000-8369-261X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17122-17133
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10623537
source IEEE Electronic Library (IEL)
subjects Bayesian hierarchical model
Data models
machine learning
Maintenance
Meteorology
Predictive models
road surface conditions
Road surface temperature
Roads
Solar radiation
spatiotemporal model
Urban areas
winter road operations
title Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Scaled%20Predictive%20Modeling%20of%20Road%20Surface%20Conditions%20and%20Temperature%20in%20Urban%20Areas&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ishii,%20Keita&rft.date=2024-11&rft.volume=25&rft.issue=11&rft.spage=17122&rft.epage=17133&rft.pages=17122-17133&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3433004&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3433004%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10623537&rfr_iscdi=true