Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas
Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather informa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-11, Vol.25 (11), p.17122-17133 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17133 |
---|---|
container_issue | 11 |
container_start_page | 17122 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Ishii, Keita Ono, Shunsuke Masago, Takeshi Ishizuki, Masamu Mori, Teppei Hanatsuka, Yasushi |
description | Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather information systems. Additionally, few methods have been proposed for predicting road surface conditions specifically in urban areas, where roads frequently experience shading from surrounding buildings. This study proposes a statistical approach for predicting road surface temperature and conditions in urban road networks. The complicated accumulated distribution of solar radiation along each road is calculated and used as an effective explanatory variable that considers the complex shading effects of nearby structures. The proposed model adopts a Bayesian spatiotemporal hierarchical framework for predicting road surface temperature using a solar radiation variable. Furthermore, a spatial machine learning model is implemented to estimate road surface conditions. The model classifies icy road conditions into six distinct types, achieving a sensitivity of 0.7712 and a balanced accuracy of 0.8637. Ultimately, the model provides significant information required for decision-making processes aimed at ensuring efficient winter road management. These results indicate that the applicability of the proposed approach can extend beyond the studied area, demonstrating its potential for broader implementation. |
doi_str_mv | 10.1109/TITS.2024.3433004 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10623537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10623537</ieee_id><sourcerecordid>10_1109_TITS_2024_3433004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-424764a392231dba1f8a026ec42f1b7c692c632b2e9720133786af8f46e341b23</originalsourceid><addsrcrecordid>eNpNkMFKAzEYhIMoWKsPIHjIC2zNn2Szu8dSrBYqirs9eFqyyR-JtNmSbAXf3i7twdMMw8wcPkLugc0AWPXYrJp6xhmXMyGFYExekAnkeZkxBupy9FxmFcvZNblJ6fuYyhxgQj6XPmBWG71FS98jWm8G_4P0tbe49eGL9o5-9NrS-hCdNkgXfbB-8H1IVAdLG9ztMerhEJH6QDex04HOI-p0S66c3ia8O-uUbJZPzeIlW789rxbzdWZAlkMmuSyU1KLiXIDtNLhSM67QSO6gK4yquFGCdxyrgjMQoiiVdqWTCoWEjospgdOviX1KEV27j36n428LrB3ZtCObdmTTntkcNw-njUfEf33FRS4K8Qcyd19h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas</title><source>IEEE Electronic Library (IEL)</source><creator>Ishii, Keita ; Ono, Shunsuke ; Masago, Takeshi ; Ishizuki, Masamu ; Mori, Teppei ; Hanatsuka, Yasushi</creator><creatorcontrib>Ishii, Keita ; Ono, Shunsuke ; Masago, Takeshi ; Ishizuki, Masamu ; Mori, Teppei ; Hanatsuka, Yasushi</creatorcontrib><description>Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather information systems. Additionally, few methods have been proposed for predicting road surface conditions specifically in urban areas, where roads frequently experience shading from surrounding buildings. This study proposes a statistical approach for predicting road surface temperature and conditions in urban road networks. The complicated accumulated distribution of solar radiation along each road is calculated and used as an effective explanatory variable that considers the complex shading effects of nearby structures. The proposed model adopts a Bayesian spatiotemporal hierarchical framework for predicting road surface temperature using a solar radiation variable. Furthermore, a spatial machine learning model is implemented to estimate road surface conditions. The model classifies icy road conditions into six distinct types, achieving a sensitivity of 0.7712 and a balanced accuracy of 0.8637. Ultimately, the model provides significant information required for decision-making processes aimed at ensuring efficient winter road management. These results indicate that the applicability of the proposed approach can extend beyond the studied area, demonstrating its potential for broader implementation.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3433004</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian hierarchical model ; Data models ; machine learning ; Maintenance ; Meteorology ; Predictive models ; road surface conditions ; Road surface temperature ; Roads ; Solar radiation ; spatiotemporal model ; Urban areas ; winter road operations</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17122-17133</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-424764a392231dba1f8a026ec42f1b7c692c632b2e9720133786af8f46e341b23</cites><orcidid>0009-0003-6745-6600 ; 0009-0002-0154-8548 ; 0000-0001-7890-5131 ; 0009-0000-8369-261X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10623537$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Ishii, Keita</creatorcontrib><creatorcontrib>Ono, Shunsuke</creatorcontrib><creatorcontrib>Masago, Takeshi</creatorcontrib><creatorcontrib>Ishizuki, Masamu</creatorcontrib><creatorcontrib>Mori, Teppei</creatorcontrib><creatorcontrib>Hanatsuka, Yasushi</creatorcontrib><title>Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather information systems. Additionally, few methods have been proposed for predicting road surface conditions specifically in urban areas, where roads frequently experience shading from surrounding buildings. This study proposes a statistical approach for predicting road surface temperature and conditions in urban road networks. The complicated accumulated distribution of solar radiation along each road is calculated and used as an effective explanatory variable that considers the complex shading effects of nearby structures. The proposed model adopts a Bayesian spatiotemporal hierarchical framework for predicting road surface temperature using a solar radiation variable. Furthermore, a spatial machine learning model is implemented to estimate road surface conditions. The model classifies icy road conditions into six distinct types, achieving a sensitivity of 0.7712 and a balanced accuracy of 0.8637. Ultimately, the model provides significant information required for decision-making processes aimed at ensuring efficient winter road management. These results indicate that the applicability of the proposed approach can extend beyond the studied area, demonstrating its potential for broader implementation.</description><subject>Bayesian hierarchical model</subject><subject>Data models</subject><subject>machine learning</subject><subject>Maintenance</subject><subject>Meteorology</subject><subject>Predictive models</subject><subject>road surface conditions</subject><subject>Road surface temperature</subject><subject>Roads</subject><subject>Solar radiation</subject><subject>spatiotemporal model</subject><subject>Urban areas</subject><subject>winter road operations</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEYhIMoWKsPIHjIC2zNn2Szu8dSrBYqirs9eFqyyR-JtNmSbAXf3i7twdMMw8wcPkLugc0AWPXYrJp6xhmXMyGFYExekAnkeZkxBupy9FxmFcvZNblJ6fuYyhxgQj6XPmBWG71FS98jWm8G_4P0tbe49eGL9o5-9NrS-hCdNkgXfbB-8H1IVAdLG9ztMerhEJH6QDex04HOI-p0S66c3ia8O-uUbJZPzeIlW789rxbzdWZAlkMmuSyU1KLiXIDtNLhSM67QSO6gK4yquFGCdxyrgjMQoiiVdqWTCoWEjospgdOviX1KEV27j36n428LrB3ZtCObdmTTntkcNw-njUfEf33FRS4K8Qcyd19h</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ishii, Keita</creator><creator>Ono, Shunsuke</creator><creator>Masago, Takeshi</creator><creator>Ishizuki, Masamu</creator><creator>Mori, Teppei</creator><creator>Hanatsuka, Yasushi</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0003-6745-6600</orcidid><orcidid>https://orcid.org/0009-0002-0154-8548</orcidid><orcidid>https://orcid.org/0000-0001-7890-5131</orcidid><orcidid>https://orcid.org/0009-0000-8369-261X</orcidid></search><sort><creationdate>202411</creationdate><title>Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas</title><author>Ishii, Keita ; Ono, Shunsuke ; Masago, Takeshi ; Ishizuki, Masamu ; Mori, Teppei ; Hanatsuka, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-424764a392231dba1f8a026ec42f1b7c692c632b2e9720133786af8f46e341b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian hierarchical model</topic><topic>Data models</topic><topic>machine learning</topic><topic>Maintenance</topic><topic>Meteorology</topic><topic>Predictive models</topic><topic>road surface conditions</topic><topic>Road surface temperature</topic><topic>Roads</topic><topic>Solar radiation</topic><topic>spatiotemporal model</topic><topic>Urban areas</topic><topic>winter road operations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishii, Keita</creatorcontrib><creatorcontrib>Ono, Shunsuke</creatorcontrib><creatorcontrib>Masago, Takeshi</creatorcontrib><creatorcontrib>Ishizuki, Masamu</creatorcontrib><creatorcontrib>Mori, Teppei</creatorcontrib><creatorcontrib>Hanatsuka, Yasushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishii, Keita</au><au>Ono, Shunsuke</au><au>Masago, Takeshi</au><au>Ishizuki, Masamu</au><au>Mori, Teppei</au><au>Hanatsuka, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-11</date><risdate>2024</risdate><volume>25</volume><issue>11</issue><spage>17122</spage><epage>17133</epage><pages>17122-17133</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Road administrators require fine-scaled information regarding road surface conditions to ensure efficient operation during winter periods. However, conventional models offer low-resolution information at a scale comparable to meteorological meshes or the spatial configuration of road weather information systems. Additionally, few methods have been proposed for predicting road surface conditions specifically in urban areas, where roads frequently experience shading from surrounding buildings. This study proposes a statistical approach for predicting road surface temperature and conditions in urban road networks. The complicated accumulated distribution of solar radiation along each road is calculated and used as an effective explanatory variable that considers the complex shading effects of nearby structures. The proposed model adopts a Bayesian spatiotemporal hierarchical framework for predicting road surface temperature using a solar radiation variable. Furthermore, a spatial machine learning model is implemented to estimate road surface conditions. The model classifies icy road conditions into six distinct types, achieving a sensitivity of 0.7712 and a balanced accuracy of 0.8637. Ultimately, the model provides significant information required for decision-making processes aimed at ensuring efficient winter road management. These results indicate that the applicability of the proposed approach can extend beyond the studied area, demonstrating its potential for broader implementation.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3433004</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0003-6745-6600</orcidid><orcidid>https://orcid.org/0009-0002-0154-8548</orcidid><orcidid>https://orcid.org/0000-0001-7890-5131</orcidid><orcidid>https://orcid.org/0009-0000-8369-261X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-11, Vol.25 (11), p.17122-17133 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10623537 |
source | IEEE Electronic Library (IEL) |
subjects | Bayesian hierarchical model Data models machine learning Maintenance Meteorology Predictive models road surface conditions Road surface temperature Roads Solar radiation spatiotemporal model Urban areas winter road operations |
title | Fine-Scaled Predictive Modeling of Road Surface Conditions and Temperature in Urban Areas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fine-Scaled%20Predictive%20Modeling%20of%20Road%20Surface%20Conditions%20and%20Temperature%20in%20Urban%20Areas&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Ishii,%20Keita&rft.date=2024-11&rft.volume=25&rft.issue=11&rft.spage=17122&rft.epage=17133&rft.pages=17122-17133&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3433004&rft_dat=%3Ccrossref_ieee_%3E10_1109_TITS_2024_3433004%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10623537&rfr_iscdi=true |