Deep Learning-Based SNR Estimation

The signal-to-noise ratio (SNR) is an important metric for measuring signal quality and its estimation has received widespread attention in various application scenarios. In this paper, we propose an SNR estimation framework based on deep learning classification. Power spectrum input is proposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of the Communications Society 2024, Vol.5, p.4778-4796
Hauptverfasser: Zheng, Shilian, Chen, Shurun, Chen, Tao, Yang, Zhuang, Zhao, Zhijin, Yang, Xiaoniu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4796
container_issue
container_start_page 4778
container_title IEEE open journal of the Communications Society
container_volume 5
creator Zheng, Shilian
Chen, Shurun
Chen, Tao
Yang, Zhuang
Zhao, Zhijin
Yang, Xiaoniu
description The signal-to-noise ratio (SNR) is an important metric for measuring signal quality and its estimation has received widespread attention in various application scenarios. In this paper, we propose an SNR estimation framework based on deep learning classification. Power spectrum input is proposed to reduce the computational complexity. We also propose an SNR estimation method based on deep learning regression to overcome the inevitable estimation error problem of classification-based methods in dealing with signals with SNR not within the training label set. We conduct a large number of simulation experiments considering various scenarios. Results show that the proposed methods have better estimation accuracy than two existing deep learning-based SNR estimation methods in different noises and multipath channels. Furthermore, the proposed methods only need to be trained under one modulation signals to adapt to SNR estimation of other modulation signals, with superior transfer performance. Finally, the method using the average periodogram as input has stronger adaptability in few-shot scenario and requires lower computational complexity compared to the method with in-phase and quadrature (IQ) input.
doi_str_mv 10.1109/OJCOMS.2024.3436640
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10620237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10620237</ieee_id><doaj_id>oai_doaj_org_article_aa6316e69e14482db56c5d02eb929751</doaj_id><sourcerecordid>oai_doaj_org_article_aa6316e69e14482db56c5d02eb929751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-7b4f2d691fbdfd59e4b8b7edefd04c3d30d8f7d3c18d1daa937e7c2314f1c14d3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWGqfQA_F-9ZMkk12j1qrVqoFq-AtZDOTsqV2S7IX396tK9LTDMP_fwMfY5fAJwC8vFk-T5cvq4ngQk2kklorfsIGQiuVgcg_T4_2czZKacM5FzkASDVg1_dE-_GCXNzVu3V25xLhePX6Np6ltv5ybd3sLthZcNtEo785ZB8Ps_fpU7ZYPs6nt4vMCw1tZioVBOoSQoUB85JUVVSGkAJy5SVKjkUwKD0UCOhcKQ0ZLySoAB4UyiGb91xs3MbuY_c-ftvG1fb30MS1dbGt_Zasc1qCJl0SKFUIrHLtc-SCqlKUJoeOJXuWj01KkcI_D7g9WLO9NXuwZv-sda2rvlUT0VFDdylp5A9Qe2ez</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Learning-Based SNR Estimation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zheng, Shilian ; Chen, Shurun ; Chen, Tao ; Yang, Zhuang ; Zhao, Zhijin ; Yang, Xiaoniu</creator><creatorcontrib>Zheng, Shilian ; Chen, Shurun ; Chen, Tao ; Yang, Zhuang ; Zhao, Zhijin ; Yang, Xiaoniu</creatorcontrib><description>The signal-to-noise ratio (SNR) is an important metric for measuring signal quality and its estimation has received widespread attention in various application scenarios. In this paper, we propose an SNR estimation framework based on deep learning classification. Power spectrum input is proposed to reduce the computational complexity. We also propose an SNR estimation method based on deep learning regression to overcome the inevitable estimation error problem of classification-based methods in dealing with signals with SNR not within the training label set. We conduct a large number of simulation experiments considering various scenarios. Results show that the proposed methods have better estimation accuracy than two existing deep learning-based SNR estimation methods in different noises and multipath channels. Furthermore, the proposed methods only need to be trained under one modulation signals to adapt to SNR estimation of other modulation signals, with superior transfer performance. Finally, the method using the average periodogram as input has stronger adaptability in few-shot scenario and requires lower computational complexity compared to the method with in-phase and quadrature (IQ) input.</description><identifier>ISSN: 2644-125X</identifier><identifier>EISSN: 2644-125X</identifier><identifier>DOI: 10.1109/OJCOMS.2024.3436640</identifier><identifier>CODEN: IOJCAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; classification ; convolutional neural network ; Convolutional neural networks ; Deep learning ; Estimation ; Maximum likelihood estimation ; Modulation ; regression ; Signal to noise ratio</subject><ispartof>IEEE open journal of the Communications Society, 2024, Vol.5, p.4778-4796</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-7b4f2d691fbdfd59e4b8b7edefd04c3d30d8f7d3c18d1daa937e7c2314f1c14d3</cites><orcidid>0009-0001-8145-9301 ; 0000-0002-7371-2493 ; 0009-0009-5218-2014 ; 0000-0002-5408-0574 ; 0000-0003-3117-2211 ; 0000-0002-3089-4346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10620237$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zheng, Shilian</creatorcontrib><creatorcontrib>Chen, Shurun</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Yang, Zhuang</creatorcontrib><creatorcontrib>Zhao, Zhijin</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><title>Deep Learning-Based SNR Estimation</title><title>IEEE open journal of the Communications Society</title><addtitle>OJCOMS</addtitle><description>The signal-to-noise ratio (SNR) is an important metric for measuring signal quality and its estimation has received widespread attention in various application scenarios. In this paper, we propose an SNR estimation framework based on deep learning classification. Power spectrum input is proposed to reduce the computational complexity. We also propose an SNR estimation method based on deep learning regression to overcome the inevitable estimation error problem of classification-based methods in dealing with signals with SNR not within the training label set. We conduct a large number of simulation experiments considering various scenarios. Results show that the proposed methods have better estimation accuracy than two existing deep learning-based SNR estimation methods in different noises and multipath channels. Furthermore, the proposed methods only need to be trained under one modulation signals to adapt to SNR estimation of other modulation signals, with superior transfer performance. Finally, the method using the average periodogram as input has stronger adaptability in few-shot scenario and requires lower computational complexity compared to the method with in-phase and quadrature (IQ) input.</description><subject>Accuracy</subject><subject>classification</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Estimation</subject><subject>Maximum likelihood estimation</subject><subject>Modulation</subject><subject>regression</subject><subject>Signal to noise ratio</subject><issn>2644-125X</issn><issn>2644-125X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMFKAzEQhoMoWGqfQA_F-9ZMkk12j1qrVqoFq-AtZDOTsqV2S7IX396tK9LTDMP_fwMfY5fAJwC8vFk-T5cvq4ngQk2kklorfsIGQiuVgcg_T4_2czZKacM5FzkASDVg1_dE-_GCXNzVu3V25xLhePX6Np6ltv5ybd3sLthZcNtEo785ZB8Ps_fpU7ZYPs6nt4vMCw1tZioVBOoSQoUB85JUVVSGkAJy5SVKjkUwKD0UCOhcKQ0ZLySoAB4UyiGb91xs3MbuY_c-ftvG1fb30MS1dbGt_Zasc1qCJl0SKFUIrHLtc-SCqlKUJoeOJXuWj01KkcI_D7g9WLO9NXuwZv-sda2rvlUT0VFDdylp5A9Qe2ez</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zheng, Shilian</creator><creator>Chen, Shurun</creator><creator>Chen, Tao</creator><creator>Yang, Zhuang</creator><creator>Zhao, Zhijin</creator><creator>Yang, Xiaoniu</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-8145-9301</orcidid><orcidid>https://orcid.org/0000-0002-7371-2493</orcidid><orcidid>https://orcid.org/0009-0009-5218-2014</orcidid><orcidid>https://orcid.org/0000-0002-5408-0574</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid><orcidid>https://orcid.org/0000-0002-3089-4346</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Learning-Based SNR Estimation</title><author>Zheng, Shilian ; Chen, Shurun ; Chen, Tao ; Yang, Zhuang ; Zhao, Zhijin ; Yang, Xiaoniu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-7b4f2d691fbdfd59e4b8b7edefd04c3d30d8f7d3c18d1daa937e7c2314f1c14d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>classification</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Estimation</topic><topic>Maximum likelihood estimation</topic><topic>Modulation</topic><topic>regression</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shilian</creatorcontrib><creatorcontrib>Chen, Shurun</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Yang, Zhuang</creatorcontrib><creatorcontrib>Zhao, Zhijin</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Communications Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shilian</au><au>Chen, Shurun</au><au>Chen, Tao</au><au>Yang, Zhuang</au><au>Zhao, Zhijin</au><au>Yang, Xiaoniu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based SNR Estimation</atitle><jtitle>IEEE open journal of the Communications Society</jtitle><stitle>OJCOMS</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>4778</spage><epage>4796</epage><pages>4778-4796</pages><issn>2644-125X</issn><eissn>2644-125X</eissn><coden>IOJCAZ</coden><abstract>The signal-to-noise ratio (SNR) is an important metric for measuring signal quality and its estimation has received widespread attention in various application scenarios. In this paper, we propose an SNR estimation framework based on deep learning classification. Power spectrum input is proposed to reduce the computational complexity. We also propose an SNR estimation method based on deep learning regression to overcome the inevitable estimation error problem of classification-based methods in dealing with signals with SNR not within the training label set. We conduct a large number of simulation experiments considering various scenarios. Results show that the proposed methods have better estimation accuracy than two existing deep learning-based SNR estimation methods in different noises and multipath channels. Furthermore, the proposed methods only need to be trained under one modulation signals to adapt to SNR estimation of other modulation signals, with superior transfer performance. Finally, the method using the average periodogram as input has stronger adaptability in few-shot scenario and requires lower computational complexity compared to the method with in-phase and quadrature (IQ) input.</abstract><pub>IEEE</pub><doi>10.1109/OJCOMS.2024.3436640</doi><tpages>19</tpages><orcidid>https://orcid.org/0009-0001-8145-9301</orcidid><orcidid>https://orcid.org/0000-0002-7371-2493</orcidid><orcidid>https://orcid.org/0009-0009-5218-2014</orcidid><orcidid>https://orcid.org/0000-0002-5408-0574</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid><orcidid>https://orcid.org/0000-0002-3089-4346</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-125X
ispartof IEEE open journal of the Communications Society, 2024, Vol.5, p.4778-4796
issn 2644-125X
2644-125X
language eng
recordid cdi_ieee_primary_10620237
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
classification
convolutional neural network
Convolutional neural networks
Deep learning
Estimation
Maximum likelihood estimation
Modulation
regression
Signal to noise ratio
title Deep Learning-Based SNR Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20SNR%20Estimation&rft.jtitle=IEEE%20open%20journal%20of%20the%20Communications%20Society&rft.au=Zheng,%20Shilian&rft.date=2024&rft.volume=5&rft.spage=4778&rft.epage=4796&rft.pages=4778-4796&rft.issn=2644-125X&rft.eissn=2644-125X&rft.coden=IOJCAZ&rft_id=info:doi/10.1109/OJCOMS.2024.3436640&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_aa6316e69e14482db56c5d02eb929751%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10620237&rft_doaj_id=oai_doaj_org_article_aa6316e69e14482db56c5d02eb929751&rfr_iscdi=true