Satellite Retrieval of LiDAR Attenuation Coefficient From ICESat-2 and Sentinel-3 Based on Machine Learning: Inland Waters
LiDAR diffuse attenuation coefficient ( {K}_{\text {lidar}} ) describes the laser attenuation degree in water, and Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is expected to extend the observation of this parameter to satellites. However, the ICESat-2 observation is limited to the satellit...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 21 |
creator | Chen, Li Zhang, Guoping Xing, Shuai Wang, Zheng Kong, Ruiyao Xu, Qing |
description | LiDAR diffuse attenuation coefficient ( {K}_{\text {lidar}} ) describes the laser attenuation degree in water, and Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is expected to extend the observation of this parameter to satellites. However, the ICESat-2 observation is limited to the satellite trajectories, and it is hard to realize the coverage observation of inland water. Therefore, this study proposes a method fusing active and passive remote sensing data based on machine learning and uses ICESat-2 data and Sentinel-3 images to retrieve K_{\text {lidar}} of inland waters. First, K_{\text {lidar}} is retrieved from ICESat-2 water column photons. Second, the retrieved K_{\text {lidar}} and Sentinel-3 images are used to train machine learning models to generate K_{\text {lidar}} covering water bodies. Experiments were carried out in Xiaolangdi Reservoir using multitemporal data. The results show that the performance of CatBoost is better than that of random forest (RF) and XGBoost, and the consistency reaches 68.42%. Compared with in situ data, the root mean square error (RMSE) of the proposed method is 0.0555~\text {m}^{-1} , which is 61.05% higher than the RMSE of the Sentinel-3 product. By combining laser data with multispectral images, water quality observation close to field measurement can be retrieved from satellite platforms. |
doi_str_mv | 10.1109/LGRS.2024.3436833 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10620228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10620228</ieee_id><sourcerecordid>3097922333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-5020e61cee8f3ef25d036f8ad02d8d6501eb6ad7cb53208da57f1850290ed3e23</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1H81u1ltd21pYEVpFb0u6mWjKNqvZVNBfb5b24FxmGJ5nBl6ELikZUUrym3K-XI0YYeMRH_NUcn6EBlQImRCR0eN-HotE5PLtFJ113YZEUspsgH5XKkDT2AB4CcFb-FYNbg0u7f1kiSchgNupYFuHixaMsbUFF_DMt1u8KKZRThhWTuNVXFsHTcLxnepA42g8qvoj7nAJyjvr3m_xwjU9_Bp_-u4cnRjVdHBx6EP0Mps-Fw9J-TRfFJMyqWmWhkQQRiClNYA0HAwTmvDUSKUJ01KnglBYp0pn9VpwRqRWIjNURisnoDkwPkTX-7ufvv3aQReqTbvzLr6sOMmznDEea4jonqp923UeTPXp7Vb5n4qSqo-46iOu-oirQ8TRudo7FgD-8WmkmOR_XnB3LQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097922333</pqid></control><display><type>article</type><title>Satellite Retrieval of LiDAR Attenuation Coefficient From ICESat-2 and Sentinel-3 Based on Machine Learning: Inland Waters</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Li ; Zhang, Guoping ; Xing, Shuai ; Wang, Zheng ; Kong, Ruiyao ; Xu, Qing</creator><creatorcontrib>Chen, Li ; Zhang, Guoping ; Xing, Shuai ; Wang, Zheng ; Kong, Ruiyao ; Xu, Qing</creatorcontrib><description><![CDATA[LiDAR diffuse attenuation coefficient (<inline-formula> <tex-math notation="LaTeX">{K}_{\text {lidar}} </tex-math></inline-formula>) describes the laser attenuation degree in water, and Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is expected to extend the observation of this parameter to satellites. However, the ICESat-2 observation is limited to the satellite trajectories, and it is hard to realize the coverage observation of inland water. Therefore, this study proposes a method fusing active and passive remote sensing data based on machine learning and uses ICESat-2 data and Sentinel-3 images to retrieve <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> of inland waters. First, <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> is retrieved from ICESat-2 water column photons. Second, the retrieved <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> and Sentinel-3 images are used to train machine learning models to generate <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> covering water bodies. Experiments were carried out in Xiaolangdi Reservoir using multitemporal data. The results show that the performance of CatBoost is better than that of random forest (RF) and XGBoost, and the consistency reaches 68.42%. Compared with in situ data, the root mean square error (RMSE) of the proposed method is <inline-formula> <tex-math notation="LaTeX">0.0555~\text {m}^{-1} </tex-math></inline-formula>, which is 61.05% higher than the RMSE of the Sentinel-3 product. By combining laser data with multispectral images, water quality observation close to field measurement can be retrieved from satellite platforms.]]></description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3436833</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>and Land Elevation Satellite-2 (ICESat-2) ; Attenuation ; Attenuation coefficients ; CatBoost ; Cloud ; Extinction coefficient ; Ice ; Image quality ; Inland waters ; Laser radar ; Lasers ; Learning algorithms ; Lidar ; LiDAR diffuse attenuation coefficient ; Machine learning ; Observational learning ; Photonics ; Photons ; Remote sensing ; Reservoirs ; Root-mean-square errors ; Satellite imagery ; Satellite observation ; Satellites ; Sea measurements ; Sentienl-3 ; Water circulation ; Water column ; Water quality</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-5020e61cee8f3ef25d036f8ad02d8d6501eb6ad7cb53208da57f1850290ed3e23</cites><orcidid>0000-0003-4063-0114 ; 0000-0003-2505-7188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10620228$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10620228$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Zhang, Guoping</creatorcontrib><creatorcontrib>Xing, Shuai</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Kong, Ruiyao</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><title>Satellite Retrieval of LiDAR Attenuation Coefficient From ICESat-2 and Sentinel-3 Based on Machine Learning: Inland Waters</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description><![CDATA[LiDAR diffuse attenuation coefficient (<inline-formula> <tex-math notation="LaTeX">{K}_{\text {lidar}} </tex-math></inline-formula>) describes the laser attenuation degree in water, and Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is expected to extend the observation of this parameter to satellites. However, the ICESat-2 observation is limited to the satellite trajectories, and it is hard to realize the coverage observation of inland water. Therefore, this study proposes a method fusing active and passive remote sensing data based on machine learning and uses ICESat-2 data and Sentinel-3 images to retrieve <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> of inland waters. First, <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> is retrieved from ICESat-2 water column photons. Second, the retrieved <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> and Sentinel-3 images are used to train machine learning models to generate <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> covering water bodies. Experiments were carried out in Xiaolangdi Reservoir using multitemporal data. The results show that the performance of CatBoost is better than that of random forest (RF) and XGBoost, and the consistency reaches 68.42%. Compared with in situ data, the root mean square error (RMSE) of the proposed method is <inline-formula> <tex-math notation="LaTeX">0.0555~\text {m}^{-1} </tex-math></inline-formula>, which is 61.05% higher than the RMSE of the Sentinel-3 product. By combining laser data with multispectral images, water quality observation close to field measurement can be retrieved from satellite platforms.]]></description><subject>and Land Elevation Satellite-2 (ICESat-2)</subject><subject>Attenuation</subject><subject>Attenuation coefficients</subject><subject>CatBoost</subject><subject>Cloud</subject><subject>Extinction coefficient</subject><subject>Ice</subject><subject>Image quality</subject><subject>Inland waters</subject><subject>Laser radar</subject><subject>Lasers</subject><subject>Learning algorithms</subject><subject>Lidar</subject><subject>LiDAR diffuse attenuation coefficient</subject><subject>Machine learning</subject><subject>Observational learning</subject><subject>Photonics</subject><subject>Photons</subject><subject>Remote sensing</subject><subject>Reservoirs</subject><subject>Root-mean-square errors</subject><subject>Satellite imagery</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Sea measurements</subject><subject>Sentienl-3</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water quality</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw1H81u1ltd21pYEVpFb0u6mWjKNqvZVNBfb5b24FxmGJ5nBl6ELikZUUrym3K-XI0YYeMRH_NUcn6EBlQImRCR0eN-HotE5PLtFJ113YZEUspsgH5XKkDT2AB4CcFb-FYNbg0u7f1kiSchgNupYFuHixaMsbUFF_DMt1u8KKZRThhWTuNVXFsHTcLxnepA42g8qvoj7nAJyjvr3m_xwjU9_Bp_-u4cnRjVdHBx6EP0Mps-Fw9J-TRfFJMyqWmWhkQQRiClNYA0HAwTmvDUSKUJ01KnglBYp0pn9VpwRqRWIjNURisnoDkwPkTX-7ufvv3aQReqTbvzLr6sOMmznDEea4jonqp923UeTPXp7Vb5n4qSqo-46iOu-oirQ8TRudo7FgD-8WmkmOR_XnB3LQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Chen, Li</creator><creator>Zhang, Guoping</creator><creator>Xing, Shuai</creator><creator>Wang, Zheng</creator><creator>Kong, Ruiyao</creator><creator>Xu, Qing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4063-0114</orcidid><orcidid>https://orcid.org/0000-0003-2505-7188</orcidid></search><sort><creationdate>2024</creationdate><title>Satellite Retrieval of LiDAR Attenuation Coefficient From ICESat-2 and Sentinel-3 Based on Machine Learning: Inland Waters</title><author>Chen, Li ; Zhang, Guoping ; Xing, Shuai ; Wang, Zheng ; Kong, Ruiyao ; Xu, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-5020e61cee8f3ef25d036f8ad02d8d6501eb6ad7cb53208da57f1850290ed3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>and Land Elevation Satellite-2 (ICESat-2)</topic><topic>Attenuation</topic><topic>Attenuation coefficients</topic><topic>CatBoost</topic><topic>Cloud</topic><topic>Extinction coefficient</topic><topic>Ice</topic><topic>Image quality</topic><topic>Inland waters</topic><topic>Laser radar</topic><topic>Lasers</topic><topic>Learning algorithms</topic><topic>Lidar</topic><topic>LiDAR diffuse attenuation coefficient</topic><topic>Machine learning</topic><topic>Observational learning</topic><topic>Photonics</topic><topic>Photons</topic><topic>Remote sensing</topic><topic>Reservoirs</topic><topic>Root-mean-square errors</topic><topic>Satellite imagery</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Sea measurements</topic><topic>Sentienl-3</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Zhang, Guoping</creatorcontrib><creatorcontrib>Xing, Shuai</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Kong, Ruiyao</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Li</au><au>Zhang, Guoping</au><au>Xing, Shuai</au><au>Wang, Zheng</au><au>Kong, Ruiyao</au><au>Xu, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite Retrieval of LiDAR Attenuation Coefficient From ICESat-2 and Sentinel-3 Based on Machine Learning: Inland Waters</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract><![CDATA[LiDAR diffuse attenuation coefficient (<inline-formula> <tex-math notation="LaTeX">{K}_{\text {lidar}} </tex-math></inline-formula>) describes the laser attenuation degree in water, and Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is expected to extend the observation of this parameter to satellites. However, the ICESat-2 observation is limited to the satellite trajectories, and it is hard to realize the coverage observation of inland water. Therefore, this study proposes a method fusing active and passive remote sensing data based on machine learning and uses ICESat-2 data and Sentinel-3 images to retrieve <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> of inland waters. First, <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> is retrieved from ICESat-2 water column photons. Second, the retrieved <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> and Sentinel-3 images are used to train machine learning models to generate <inline-formula> <tex-math notation="LaTeX">K_{\text {lidar}} </tex-math></inline-formula> covering water bodies. Experiments were carried out in Xiaolangdi Reservoir using multitemporal data. The results show that the performance of CatBoost is better than that of random forest (RF) and XGBoost, and the consistency reaches 68.42%. Compared with in situ data, the root mean square error (RMSE) of the proposed method is <inline-formula> <tex-math notation="LaTeX">0.0555~\text {m}^{-1} </tex-math></inline-formula>, which is 61.05% higher than the RMSE of the Sentinel-3 product. By combining laser data with multispectral images, water quality observation close to field measurement can be retrieved from satellite platforms.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3436833</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4063-0114</orcidid><orcidid>https://orcid.org/0000-0003-2505-7188</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_10620228 |
source | IEEE Electronic Library (IEL) |
subjects | and Land Elevation Satellite-2 (ICESat-2) Attenuation Attenuation coefficients CatBoost Cloud Extinction coefficient Ice Image quality Inland waters Laser radar Lasers Learning algorithms Lidar LiDAR diffuse attenuation coefficient Machine learning Observational learning Photonics Photons Remote sensing Reservoirs Root-mean-square errors Satellite imagery Satellite observation Satellites Sea measurements Sentienl-3 Water circulation Water column Water quality |
title | Satellite Retrieval of LiDAR Attenuation Coefficient From ICESat-2 and Sentinel-3 Based on Machine Learning: Inland Waters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A06%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20Retrieval%20of%20LiDAR%20Attenuation%20Coefficient%20From%20ICESat-2%20and%20Sentinel-3%20Based%20on%20Machine%20Learning:%20Inland%20Waters&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Chen,%20Li&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3436833&rft_dat=%3Cproquest_RIE%3E3097922333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097922333&rft_id=info:pmid/&rft_ieee_id=10620228&rfr_iscdi=true |