Detection of Malicious Domains With Concept Drift Using Ensemble Learning

In the current landscape of network technology, it is indisputable that the Domain Name System (DNS) plays a vital role but also encounters significant security challenges. Despite the potential of recent advancements in deep learning and machine learning, concept drift is often not addressed. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2024-12, Vol.21 (6), p.6796-6809
Hauptverfasser: Chiang, Pin-Hsuan, Tsai, Shi-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6809
container_issue 6
container_start_page 6796
container_title IEEE eTransactions on network and service management
container_volume 21
creator Chiang, Pin-Hsuan
Tsai, Shi-Chun
description In the current landscape of network technology, it is indisputable that the Domain Name System (DNS) plays a vital role but also encounters significant security challenges. Despite the potential of recent advancements in deep learning and machine learning, concept drift is often not addressed. In this work, we designed a DNS anomaly detection system leveraging client-domain associations. We propose the Modified Deterministic Sampling Classifier with weighted Bagging (MDSCB) method, a chunk-based ensemble learning approach addressing concept drift and data imbalance. It integrates weighted bagging, resampling, random feature selection, and a retention strategy for classifier updates, enhancing adaptability and efficiency. We conducted experiments using multiple real-world and synthetic datasets for evaluation. Empirical studies show that our detection system can help identify malicious domains that are difficult for firewalls to detect timely. Moreover, MDSCB outperforms other methods in terms of performance and efficiency.
doi_str_mv 10.1109/TNSM.2024.3435516
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10620214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10620214</ieee_id><sourcerecordid>3147520214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-f218034a6b3b14228b72da82131c175d2766a419df6fd297657d4e76d149337a3</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAEgMlphTcrZjJyNqC1RqYaAVo-UkNrhq7GK7A29PqnTodKfT9_8nfQjdQz4ByKun9fvnakJywiaU0aIAfoFGUFGSsYKKy7P9Gt3EuM3zooSKjNBippNukvUOe4NXamcb6w8Rz3ynrIv4y6YfPPWu0fuEZ8GahDfRum88d1F39U7jpVbB9ZdbdGXULuq70xyjzct8PX3Llh-vi-nzMmtA8JQZAmVOmeI1rYERUtaCtKokQKEHipYIzhWDqjXctKQSvBAt04K3wCpKhaJj9Dj07oP_PeiY5NYfgutfSgpMFL0EYD0FA9UEH2PQRu6D7VT4k5DLozF5NCaPxuTJWJ95GDJWa33G86HyHwumZWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147520214</pqid></control><display><type>article</type><title>Detection of Malicious Domains With Concept Drift Using Ensemble Learning</title><source>IEEE Xplore</source><creator>Chiang, Pin-Hsuan ; Tsai, Shi-Chun</creator><creatorcontrib>Chiang, Pin-Hsuan ; Tsai, Shi-Chun</creatorcontrib><description>In the current landscape of network technology, it is indisputable that the Domain Name System (DNS) plays a vital role but also encounters significant security challenges. Despite the potential of recent advancements in deep learning and machine learning, concept drift is often not addressed. In this work, we designed a DNS anomaly detection system leveraging client-domain associations. We propose the Modified Deterministic Sampling Classifier with weighted Bagging (MDSCB) method, a chunk-based ensemble learning approach addressing concept drift and data imbalance. It integrates weighted bagging, resampling, random feature selection, and a retention strategy for classifier updates, enhancing adaptability and efficiency. We conducted experiments using multiple real-world and synthetic datasets for evaluation. Empirical studies show that our detection system can help identify malicious domains that are difficult for firewalls to detect timely. Moreover, MDSCB outperforms other methods in terms of performance and efficiency.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2024.3435516</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Anomalies ; Anomaly detection ; artificial intelligence and machine learning ; Bagging ; Concept drift ; Data models ; Deep learning ; Domain Name System ; Domain names ; Drift ; Ensemble learning ; Machine learning ; Resampling ; Security management ; security services ; Streams ; Synthetic data</subject><ispartof>IEEE eTransactions on network and service management, 2024-12, Vol.21 (6), p.6796-6809</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-f218034a6b3b14228b72da82131c175d2766a419df6fd297657d4e76d149337a3</cites><orcidid>0000-0002-0085-0377</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10620214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10620214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chiang, Pin-Hsuan</creatorcontrib><creatorcontrib>Tsai, Shi-Chun</creatorcontrib><title>Detection of Malicious Domains With Concept Drift Using Ensemble Learning</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>In the current landscape of network technology, it is indisputable that the Domain Name System (DNS) plays a vital role but also encounters significant security challenges. Despite the potential of recent advancements in deep learning and machine learning, concept drift is often not addressed. In this work, we designed a DNS anomaly detection system leveraging client-domain associations. We propose the Modified Deterministic Sampling Classifier with weighted Bagging (MDSCB) method, a chunk-based ensemble learning approach addressing concept drift and data imbalance. It integrates weighted bagging, resampling, random feature selection, and a retention strategy for classifier updates, enhancing adaptability and efficiency. We conducted experiments using multiple real-world and synthetic datasets for evaluation. Empirical studies show that our detection system can help identify malicious domains that are difficult for firewalls to detect timely. Moreover, MDSCB outperforms other methods in terms of performance and efficiency.</description><subject>Adaptation models</subject><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>artificial intelligence and machine learning</subject><subject>Bagging</subject><subject>Concept drift</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Domain Name System</subject><subject>Domain names</subject><subject>Drift</subject><subject>Ensemble learning</subject><subject>Machine learning</subject><subject>Resampling</subject><subject>Security management</subject><subject>security services</subject><subject>Streams</subject><subject>Synthetic data</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAQhi0EEqXwAEgMlphTcrZjJyNqC1RqYaAVo-UkNrhq7GK7A29PqnTodKfT9_8nfQjdQz4ByKun9fvnakJywiaU0aIAfoFGUFGSsYKKy7P9Gt3EuM3zooSKjNBippNukvUOe4NXamcb6w8Rz3ynrIv4y6YfPPWu0fuEZ8GahDfRum88d1F39U7jpVbB9ZdbdGXULuq70xyjzct8PX3Llh-vi-nzMmtA8JQZAmVOmeI1rYERUtaCtKokQKEHipYIzhWDqjXctKQSvBAt04K3wCpKhaJj9Dj07oP_PeiY5NYfgutfSgpMFL0EYD0FA9UEH2PQRu6D7VT4k5DLozF5NCaPxuTJWJ95GDJWa33G86HyHwumZWw</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Chiang, Pin-Hsuan</creator><creator>Tsai, Shi-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0085-0377</orcidid></search><sort><creationdate>20241201</creationdate><title>Detection of Malicious Domains With Concept Drift Using Ensemble Learning</title><author>Chiang, Pin-Hsuan ; Tsai, Shi-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-f218034a6b3b14228b72da82131c175d2766a419df6fd297657d4e76d149337a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>artificial intelligence and machine learning</topic><topic>Bagging</topic><topic>Concept drift</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Domain Name System</topic><topic>Domain names</topic><topic>Drift</topic><topic>Ensemble learning</topic><topic>Machine learning</topic><topic>Resampling</topic><topic>Security management</topic><topic>security services</topic><topic>Streams</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Pin-Hsuan</creatorcontrib><creatorcontrib>Tsai, Shi-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiang, Pin-Hsuan</au><au>Tsai, Shi-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Malicious Domains With Concept Drift Using Ensemble Learning</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>6796</spage><epage>6809</epage><pages>6796-6809</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>In the current landscape of network technology, it is indisputable that the Domain Name System (DNS) plays a vital role but also encounters significant security challenges. Despite the potential of recent advancements in deep learning and machine learning, concept drift is often not addressed. In this work, we designed a DNS anomaly detection system leveraging client-domain associations. We propose the Modified Deterministic Sampling Classifier with weighted Bagging (MDSCB) method, a chunk-based ensemble learning approach addressing concept drift and data imbalance. It integrates weighted bagging, resampling, random feature selection, and a retention strategy for classifier updates, enhancing adaptability and efficiency. We conducted experiments using multiple real-world and synthetic datasets for evaluation. Empirical studies show that our detection system can help identify malicious domains that are difficult for firewalls to detect timely. Moreover, MDSCB outperforms other methods in terms of performance and efficiency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2024.3435516</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0085-0377</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2024-12, Vol.21 (6), p.6796-6809
issn 1932-4537
1932-4537
language eng
recordid cdi_ieee_primary_10620214
source IEEE Xplore
subjects Adaptation models
Anomalies
Anomaly detection
artificial intelligence and machine learning
Bagging
Concept drift
Data models
Deep learning
Domain Name System
Domain names
Drift
Ensemble learning
Machine learning
Resampling
Security management
security services
Streams
Synthetic data
title Detection of Malicious Domains With Concept Drift Using Ensemble Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Malicious%20Domains%20With%20Concept%20Drift%20Using%20Ensemble%20Learning&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Chiang,%20Pin-Hsuan&rft.date=2024-12-01&rft.volume=21&rft.issue=6&rft.spage=6796&rft.epage=6809&rft.pages=6796-6809&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2024.3435516&rft_dat=%3Cproquest_RIE%3E3147520214%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147520214&rft_id=info:pmid/&rft_ieee_id=10620214&rfr_iscdi=true