Magnetite-coal separation by continuous HGMS

Magnetite, slurried in water, is used to create an apparent heavy medium in which fine coal (0.1 to 2.4 mm) is cleaned of its mineral impurities. The magnetite is much finer in size (1 to 44 μm) than the coal and is usually recovered from the coal and refuse by magnetic drum separators. Their perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE Trans. Magn.; (United States) 1982-11, Vol.18 (6), p.1698-1700
Hauptverfasser: Dobby, G., Kelland, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1700
container_issue 6
container_start_page 1698
container_title IEEE Trans. Magn.; (United States)
container_volume 18
creator Dobby, G.
Kelland, D.
description Magnetite, slurried in water, is used to create an apparent heavy medium in which fine coal (0.1 to 2.4 mm) is cleaned of its mineral impurities. The magnetite is much finer in size (1 to 44 μm) than the coal and is usually recovered from the coal and refuse by magnetic drum separators. Their performance suffers from changes in feed conditions and a number of them are needed for the average coal cleaning plant. We have adapted HGMS for magnetite recovery because of its insensitivity to coal/magnetite ratio and slurry density and its ability to capture fine magnetite at high velocity. An open vertical matrix able to capture 10 μm (avg. size) magnetite without entraining 2 mm coal has been incorporated in a 1.85 m diameter continuous separator. Three-quarter ton samples of magnetite (in 1000 gallons of water) have been recovered with the matrix ring turning at 40 cm/s through a field of 6 kOe. A laminated core demagnetizing coil followed by water sprays removes the recovered magnetite. In preparation for this continuous program, tests of slurry densities from 20 to 35% solids and coal/magnetite ratios'from 3:1 to 1:4 showed almost no variation in recovery or entrainment. A 4.8 m diameter separator, the largest currently available, with multiple heads, should be able to treat 350 tons of magnetite and coal per hour.
doi_str_mv 10.1109/TMAG.1982.1062012
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1062012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1062012</ieee_id><sourcerecordid>28357336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-402dd34404de08db422071024148a1f9cb0a681951e7d5c6581cde27e7316a813</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAIglYmAi5c5xHHusELRIrRgos-U6VwhK4xK7Q98eV-nAdDrd959-fYzdIkwQQT-tltPZBLXiEwTJAfkZG6EWmANIfc5GAKhyLaS4ZFch_KRVlAgj9ri0Xx3FJlLuvG2zQDvb29j4LlsfMue72HR7vw_ZfLb8uGYXG9sGujnNMft8fVk9z_PF--ztebrIHVc65gJ4XRdCgKgJVL0WnEOFwAUKZXGj3RqsVKhLpKounSwVupp4RVWB0iosxux--OtDbExwqZ37Tl06ctEkWoKsEvQwQLve_-4pRLNtgqO2tR2lwoaroqyKQiYQB9D1PoSeNmbXN1vbHwyCOcozR3nmKM-c5KXM3ZBpiOgfP1z_AGchaAc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28357336</pqid></control><display><type>article</type><title>Magnetite-coal separation by continuous HGMS</title><source>IEEE Electronic Library (IEL)</source><creator>Dobby, G. ; Kelland, D.</creator><creatorcontrib>Dobby, G. ; Kelland, D. ; MIT Francis Bitter National Magnet Laboratory, Cambridge, MA 02139</creatorcontrib><description>Magnetite, slurried in water, is used to create an apparent heavy medium in which fine coal (0.1 to 2.4 mm) is cleaned of its mineral impurities. The magnetite is much finer in size (1 to 44 μm) than the coal and is usually recovered from the coal and refuse by magnetic drum separators. Their performance suffers from changes in feed conditions and a number of them are needed for the average coal cleaning plant. We have adapted HGMS for magnetite recovery because of its insensitivity to coal/magnetite ratio and slurry density and its ability to capture fine magnetite at high velocity. An open vertical matrix able to capture 10 μm (avg. size) magnetite without entraining 2 mm coal has been incorporated in a 1.85 m diameter continuous separator. Three-quarter ton samples of magnetite (in 1000 gallons of water) have been recovered with the matrix ring turning at 40 cm/s through a field of 6 kOe. A laminated core demagnetizing coil followed by water sprays removes the recovered magnetite. In preparation for this continuous program, tests of slurry densities from 20 to 35% solids and coal/magnetite ratios'from 3:1 to 1:4 showed almost no variation in recovery or entrainment. A 4.8 m diameter separator, the largest currently available, with multiple heads, should be able to treat 350 tons of magnetite and coal per hour.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.1982.1062012</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>01 COAL, LIGNITE, AND PEAT ; 010402 - Coal, Lignite, &amp; Peat- Purification &amp; Upgrading ; CARBONACEOUS MATERIALS ; CHALCOGENIDES ; Cleaning ; COAL ; COAL PREPARATION ; CONCENTRATORS ; DEMINERALIZATION ; DISPERSIONS ; ENERGY SOURCES ; ENTRAINMENT ; Feeds ; FOSSIL FUELS ; FUELS ; Impurities ; IRON COMPOUNDS ; IRON ORES ; IRON OXIDES ; Magnetic cores ; Magnetic separation ; MAGNETIC SEPARATORS ; MAGNETITE ; MATERIALS ; MINERALS ; MIXTURES ; ORES ; OXIDE MINERALS ; OXIDES ; OXYGEN COMPOUNDS ; Particle separators ; PARTICLE SIZE ; RECOVERY ; SEPARATION PROCESSES ; SIZE ; SLURRIES ; SUSPENSIONS ; TRANSITION ELEMENT COMPOUNDS ; Turning ; Waste materials</subject><ispartof>IEEE Trans. Magn.; (United States), 1982-11, Vol.18 (6), p.1698-1700</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-402dd34404de08db422071024148a1f9cb0a681951e7d5c6581cde27e7316a813</citedby><cites>FETCH-LOGICAL-c289t-402dd34404de08db422071024148a1f9cb0a681951e7d5c6581cde27e7316a813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1062012$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1062012$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/5816067$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dobby, G.</creatorcontrib><creatorcontrib>Kelland, D.</creatorcontrib><creatorcontrib>MIT Francis Bitter National Magnet Laboratory, Cambridge, MA 02139</creatorcontrib><title>Magnetite-coal separation by continuous HGMS</title><title>IEEE Trans. Magn.; (United States)</title><addtitle>TMAG</addtitle><description>Magnetite, slurried in water, is used to create an apparent heavy medium in which fine coal (0.1 to 2.4 mm) is cleaned of its mineral impurities. The magnetite is much finer in size (1 to 44 μm) than the coal and is usually recovered from the coal and refuse by magnetic drum separators. Their performance suffers from changes in feed conditions and a number of them are needed for the average coal cleaning plant. We have adapted HGMS for magnetite recovery because of its insensitivity to coal/magnetite ratio and slurry density and its ability to capture fine magnetite at high velocity. An open vertical matrix able to capture 10 μm (avg. size) magnetite without entraining 2 mm coal has been incorporated in a 1.85 m diameter continuous separator. Three-quarter ton samples of magnetite (in 1000 gallons of water) have been recovered with the matrix ring turning at 40 cm/s through a field of 6 kOe. A laminated core demagnetizing coil followed by water sprays removes the recovered magnetite. In preparation for this continuous program, tests of slurry densities from 20 to 35% solids and coal/magnetite ratios'from 3:1 to 1:4 showed almost no variation in recovery or entrainment. A 4.8 m diameter separator, the largest currently available, with multiple heads, should be able to treat 350 tons of magnetite and coal per hour.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>010402 - Coal, Lignite, &amp; Peat- Purification &amp; Upgrading</subject><subject>CARBONACEOUS MATERIALS</subject><subject>CHALCOGENIDES</subject><subject>Cleaning</subject><subject>COAL</subject><subject>COAL PREPARATION</subject><subject>CONCENTRATORS</subject><subject>DEMINERALIZATION</subject><subject>DISPERSIONS</subject><subject>ENERGY SOURCES</subject><subject>ENTRAINMENT</subject><subject>Feeds</subject><subject>FOSSIL FUELS</subject><subject>FUELS</subject><subject>Impurities</subject><subject>IRON COMPOUNDS</subject><subject>IRON ORES</subject><subject>IRON OXIDES</subject><subject>Magnetic cores</subject><subject>Magnetic separation</subject><subject>MAGNETIC SEPARATORS</subject><subject>MAGNETITE</subject><subject>MATERIALS</subject><subject>MINERALS</subject><subject>MIXTURES</subject><subject>ORES</subject><subject>OXIDE MINERALS</subject><subject>OXIDES</subject><subject>OXYGEN COMPOUNDS</subject><subject>Particle separators</subject><subject>PARTICLE SIZE</subject><subject>RECOVERY</subject><subject>SEPARATION PROCESSES</subject><subject>SIZE</subject><subject>SLURRIES</subject><subject>SUSPENSIONS</subject><subject>TRANSITION ELEMENT COMPOUNDS</subject><subject>Turning</subject><subject>Waste materials</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAQhi0EEqXwAIglYmAi5c5xHHusELRIrRgos-U6VwhK4xK7Q98eV-nAdDrd959-fYzdIkwQQT-tltPZBLXiEwTJAfkZG6EWmANIfc5GAKhyLaS4ZFch_KRVlAgj9ri0Xx3FJlLuvG2zQDvb29j4LlsfMue72HR7vw_ZfLb8uGYXG9sGujnNMft8fVk9z_PF--ztebrIHVc65gJ4XRdCgKgJVL0WnEOFwAUKZXGj3RqsVKhLpKounSwVupp4RVWB0iosxux--OtDbExwqZ37Tl06ctEkWoKsEvQwQLve_-4pRLNtgqO2tR2lwoaroqyKQiYQB9D1PoSeNmbXN1vbHwyCOcozR3nmKM-c5KXM3ZBpiOgfP1z_AGchaAc</recordid><startdate>19821101</startdate><enddate>19821101</enddate><creator>Dobby, G.</creator><creator>Kelland, D.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19821101</creationdate><title>Magnetite-coal separation by continuous HGMS</title><author>Dobby, G. ; Kelland, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-402dd34404de08db422071024148a1f9cb0a681951e7d5c6581cde27e7316a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>010402 - Coal, Lignite, &amp; Peat- Purification &amp; Upgrading</topic><topic>CARBONACEOUS MATERIALS</topic><topic>CHALCOGENIDES</topic><topic>Cleaning</topic><topic>COAL</topic><topic>COAL PREPARATION</topic><topic>CONCENTRATORS</topic><topic>DEMINERALIZATION</topic><topic>DISPERSIONS</topic><topic>ENERGY SOURCES</topic><topic>ENTRAINMENT</topic><topic>Feeds</topic><topic>FOSSIL FUELS</topic><topic>FUELS</topic><topic>Impurities</topic><topic>IRON COMPOUNDS</topic><topic>IRON ORES</topic><topic>IRON OXIDES</topic><topic>Magnetic cores</topic><topic>Magnetic separation</topic><topic>MAGNETIC SEPARATORS</topic><topic>MAGNETITE</topic><topic>MATERIALS</topic><topic>MINERALS</topic><topic>MIXTURES</topic><topic>ORES</topic><topic>OXIDE MINERALS</topic><topic>OXIDES</topic><topic>OXYGEN COMPOUNDS</topic><topic>Particle separators</topic><topic>PARTICLE SIZE</topic><topic>RECOVERY</topic><topic>SEPARATION PROCESSES</topic><topic>SIZE</topic><topic>SLURRIES</topic><topic>SUSPENSIONS</topic><topic>TRANSITION ELEMENT COMPOUNDS</topic><topic>Turning</topic><topic>Waste materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dobby, G.</creatorcontrib><creatorcontrib>Kelland, D.</creatorcontrib><creatorcontrib>MIT Francis Bitter National Magnet Laboratory, Cambridge, MA 02139</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE Trans. Magn.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dobby, G.</au><au>Kelland, D.</au><aucorp>MIT Francis Bitter National Magnet Laboratory, Cambridge, MA 02139</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetite-coal separation by continuous HGMS</atitle><jtitle>IEEE Trans. Magn.; (United States)</jtitle><stitle>TMAG</stitle><date>1982-11-01</date><risdate>1982</risdate><volume>18</volume><issue>6</issue><spage>1698</spage><epage>1700</epage><pages>1698-1700</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Magnetite, slurried in water, is used to create an apparent heavy medium in which fine coal (0.1 to 2.4 mm) is cleaned of its mineral impurities. The magnetite is much finer in size (1 to 44 μm) than the coal and is usually recovered from the coal and refuse by magnetic drum separators. Their performance suffers from changes in feed conditions and a number of them are needed for the average coal cleaning plant. We have adapted HGMS for magnetite recovery because of its insensitivity to coal/magnetite ratio and slurry density and its ability to capture fine magnetite at high velocity. An open vertical matrix able to capture 10 μm (avg. size) magnetite without entraining 2 mm coal has been incorporated in a 1.85 m diameter continuous separator. Three-quarter ton samples of magnetite (in 1000 gallons of water) have been recovered with the matrix ring turning at 40 cm/s through a field of 6 kOe. A laminated core demagnetizing coil followed by water sprays removes the recovered magnetite. In preparation for this continuous program, tests of slurry densities from 20 to 35% solids and coal/magnetite ratios'from 3:1 to 1:4 showed almost no variation in recovery or entrainment. A 4.8 m diameter separator, the largest currently available, with multiple heads, should be able to treat 350 tons of magnetite and coal per hour.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TMAG.1982.1062012</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE Trans. Magn.; (United States), 1982-11, Vol.18 (6), p.1698-1700
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_1062012
source IEEE Electronic Library (IEL)
subjects 01 COAL, LIGNITE, AND PEAT
010402 - Coal, Lignite, & Peat- Purification & Upgrading
CARBONACEOUS MATERIALS
CHALCOGENIDES
Cleaning
COAL
COAL PREPARATION
CONCENTRATORS
DEMINERALIZATION
DISPERSIONS
ENERGY SOURCES
ENTRAINMENT
Feeds
FOSSIL FUELS
FUELS
Impurities
IRON COMPOUNDS
IRON ORES
IRON OXIDES
Magnetic cores
Magnetic separation
MAGNETIC SEPARATORS
MAGNETITE
MATERIALS
MINERALS
MIXTURES
ORES
OXIDE MINERALS
OXIDES
OXYGEN COMPOUNDS
Particle separators
PARTICLE SIZE
RECOVERY
SEPARATION PROCESSES
SIZE
SLURRIES
SUSPENSIONS
TRANSITION ELEMENT COMPOUNDS
Turning
Waste materials
title Magnetite-coal separation by continuous HGMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetite-coal%20separation%20by%20continuous%20HGMS&rft.jtitle=IEEE%20Trans.%20Magn.;%20(United%20States)&rft.au=Dobby,%20G.&rft.aucorp=MIT%20Francis%20Bitter%20National%20Magnet%20Laboratory,%20Cambridge,%20MA%2002139&rft.date=1982-11-01&rft.volume=18&rft.issue=6&rft.spage=1698&rft.epage=1700&rft.pages=1698-1700&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.1982.1062012&rft_dat=%3Cproquest_RIE%3E28357336%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28357336&rft_id=info:pmid/&rft_ieee_id=1062012&rfr_iscdi=true