Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array

A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2024-09, Vol.72 (9), p.7287-7292
Hauptverfasser: Lang, Yi-Lin, Yi, Da, Tang, Ming-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7292
container_issue 9
container_start_page 7287
container_title IEEE transactions on antennas and propagation
container_volume 72
creator Lang, Yi-Lin
Yi, Da
Tang, Ming-Chun
description A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with a conventional microstrip patch antenna (MPA). Then, based on the analysis of these resonances in GAA, two evolution processes are implemented to improve the performance. On the one hand, the grid units are adjusted, i.e., the GAA turns into a nonuniform GAA (NUGAA). On the other hand, a coplanar L-probe and two pairs of short slots are integrated into the NUGAA. The former evolution makes the three resonance modes in GAA aligned, and thus the bandwidth is extended; meanwhile, this step introduces the radiation null (RN) at the lower operational band edge. The latter evolution generates the RN at the upper operational band-edge, which, together with the lower RN, leads to a skirt selectivity and preferable out-of-band rejection level; meanwhile, this step modifies the resonant mode in the higher band, and ensures a broadside radiation pattern with a consistent polarization. Finally, the optimized NUGAA with a compact size of 0.45\times 0.28\times 0.055\lambda _{0}^{3} is fabricated and measured, demonstrating excellent agreement with the simulation results. The proposed design achieves a bandwidth of 3.08-3.71 GHz (18.8%) with more than 21.5 dB out-of-band suppression level. Moreover, the bandwidth-to-volume ratio (BVR) reaches 0.027\times 10^{3} / \lambda _{0}^{3} .
doi_str_mv 10.1109/TAP.2024.3413569
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10618977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10618977</ieee_id><sourcerecordid>3101349390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-97344088e038769a58eace02c2ddebf53cb6600ce30dccc1b87a02014f1fc05e3</originalsourceid><addsrcrecordid>eNpNUD1PwzAQtRBIlMLOwGCJOeX8kcQeS0ULUgVILYLNcp0LpErt4qRD_z2u2oHp7vTeu7v3CLllMGIM9MNy_D7iwOVISCbyQp-RActzlXHO2TkZADCVaV58XZKrrlunUSopB8QsGv_dYja3e4zU-op-NhWuDs20aXuMCaZj36P3NkH9D11sbNvSaQj9NoE9fbQdVjR4-hr8zjd1iBs6i01FxzHa_TW5qG3b4c2pDsnH9Gk5ec7mb7OXyXieOVbmfaZLISUohSBUWWibK7QOgTtepW_qXLhVUQA4FFA559hKlRZ4MlGz2kGOYkjuj3u3MfzusOvNOuyiTyeNYMCE1EJDYsGR5WLouoi1SR42Nu4NA3OI0aQYzSFGc4oxSe6OkgYR_9ELpnRZij-P1m4p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101349390</pqid></control><display><type>article</type><title>Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array</title><source>IEEE Electronic Library (IEL)</source><creator>Lang, Yi-Lin ; Yi, Da ; Tang, Ming-Chun</creator><creatorcontrib>Lang, Yi-Lin ; Yi, Da ; Tang, Ming-Chun</creatorcontrib><description><![CDATA[A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with a conventional microstrip patch antenna (MPA). Then, based on the analysis of these resonances in GAA, two evolution processes are implemented to improve the performance. On the one hand, the grid units are adjusted, i.e., the GAA turns into a nonuniform GAA (NUGAA). On the other hand, a coplanar L-probe and two pairs of short slots are integrated into the NUGAA. The former evolution makes the three resonance modes in GAA aligned, and thus the bandwidth is extended; meanwhile, this step introduces the radiation null (RN) at the lower operational band edge. The latter evolution generates the RN at the upper operational band-edge, which, together with the lower RN, leads to a skirt selectivity and preferable out-of-band rejection level; meanwhile, this step modifies the resonant mode in the higher band, and ensures a broadside radiation pattern with a consistent polarization. Finally, the optimized NUGAA with a compact size of <inline-formula> <tex-math notation="LaTeX">0.45\times 0.28\times 0.055\lambda _{0}^{3} </tex-math></inline-formula> is fabricated and measured, demonstrating excellent agreement with the simulation results. The proposed design achieves a bandwidth of 3.08-3.71 GHz (18.8%) with more than 21.5 dB out-of-band suppression level. Moreover, the bandwidth-to-volume ratio (BVR) reaches <inline-formula> <tex-math notation="LaTeX">0.027\times 10^{3} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">\lambda _{0}^{3} </tex-math></inline-formula>.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2024.3413569</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antennas ; Bandwidth-to-volume ratio (BVR) ; Bandwidths ; Broadband ; Broadband antennas ; compact size ; Dipole antennas ; Evolution ; filtering antenna ; Filtration ; Gallium arsenide ; grid array antenna (GAA) ; Microstrip antennas ; Patch antennas ; Radiation ; Resonant frequency ; Wideband</subject><ispartof>IEEE transactions on antennas and propagation, 2024-09, Vol.72 (9), p.7287-7292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-97344088e038769a58eace02c2ddebf53cb6600ce30dccc1b87a02014f1fc05e3</cites><orcidid>0009-0001-4957-6524 ; 0000-0003-3859-1507 ; 0000-0002-5528-1327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10618977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10618977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lang, Yi-Lin</creatorcontrib><creatorcontrib>Yi, Da</creatorcontrib><creatorcontrib>Tang, Ming-Chun</creatorcontrib><title>Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with a conventional microstrip patch antenna (MPA). Then, based on the analysis of these resonances in GAA, two evolution processes are implemented to improve the performance. On the one hand, the grid units are adjusted, i.e., the GAA turns into a nonuniform GAA (NUGAA). On the other hand, a coplanar L-probe and two pairs of short slots are integrated into the NUGAA. The former evolution makes the three resonance modes in GAA aligned, and thus the bandwidth is extended; meanwhile, this step introduces the radiation null (RN) at the lower operational band edge. The latter evolution generates the RN at the upper operational band-edge, which, together with the lower RN, leads to a skirt selectivity and preferable out-of-band rejection level; meanwhile, this step modifies the resonant mode in the higher band, and ensures a broadside radiation pattern with a consistent polarization. Finally, the optimized NUGAA with a compact size of <inline-formula> <tex-math notation="LaTeX">0.45\times 0.28\times 0.055\lambda _{0}^{3} </tex-math></inline-formula> is fabricated and measured, demonstrating excellent agreement with the simulation results. The proposed design achieves a bandwidth of 3.08-3.71 GHz (18.8%) with more than 21.5 dB out-of-band suppression level. Moreover, the bandwidth-to-volume ratio (BVR) reaches <inline-formula> <tex-math notation="LaTeX">0.027\times 10^{3} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">\lambda _{0}^{3} </tex-math></inline-formula>.]]></description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Bandwidth-to-volume ratio (BVR)</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>compact size</subject><subject>Dipole antennas</subject><subject>Evolution</subject><subject>filtering antenna</subject><subject>Filtration</subject><subject>Gallium arsenide</subject><subject>grid array antenna (GAA)</subject><subject>Microstrip antennas</subject><subject>Patch antennas</subject><subject>Radiation</subject><subject>Resonant frequency</subject><subject>Wideband</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUD1PwzAQtRBIlMLOwGCJOeX8kcQeS0ULUgVILYLNcp0LpErt4qRD_z2u2oHp7vTeu7v3CLllMGIM9MNy_D7iwOVISCbyQp-RActzlXHO2TkZADCVaV58XZKrrlunUSopB8QsGv_dYja3e4zU-op-NhWuDs20aXuMCaZj36P3NkH9D11sbNvSaQj9NoE9fbQdVjR4-hr8zjd1iBs6i01FxzHa_TW5qG3b4c2pDsnH9Gk5ec7mb7OXyXieOVbmfaZLISUohSBUWWibK7QOgTtepW_qXLhVUQA4FFA559hKlRZ4MlGz2kGOYkjuj3u3MfzusOvNOuyiTyeNYMCE1EJDYsGR5WLouoi1SR42Nu4NA3OI0aQYzSFGc4oxSe6OkgYR_9ELpnRZij-P1m4p</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lang, Yi-Lin</creator><creator>Yi, Da</creator><creator>Tang, Ming-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-4957-6524</orcidid><orcidid>https://orcid.org/0000-0003-3859-1507</orcidid><orcidid>https://orcid.org/0000-0002-5528-1327</orcidid></search><sort><creationdate>20240901</creationdate><title>Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array</title><author>Lang, Yi-Lin ; Yi, Da ; Tang, Ming-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-97344088e038769a58eace02c2ddebf53cb6600ce30dccc1b87a02014f1fc05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Bandwidth-to-volume ratio (BVR)</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>compact size</topic><topic>Dipole antennas</topic><topic>Evolution</topic><topic>filtering antenna</topic><topic>Filtration</topic><topic>Gallium arsenide</topic><topic>grid array antenna (GAA)</topic><topic>Microstrip antennas</topic><topic>Patch antennas</topic><topic>Radiation</topic><topic>Resonant frequency</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Yi-Lin</creatorcontrib><creatorcontrib>Yi, Da</creatorcontrib><creatorcontrib>Tang, Ming-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lang, Yi-Lin</au><au>Yi, Da</au><au>Tang, Ming-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>72</volume><issue>9</issue><spage>7287</spage><epage>7292</epage><pages>7287-7292</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with a conventional microstrip patch antenna (MPA). Then, based on the analysis of these resonances in GAA, two evolution processes are implemented to improve the performance. On the one hand, the grid units are adjusted, i.e., the GAA turns into a nonuniform GAA (NUGAA). On the other hand, a coplanar L-probe and two pairs of short slots are integrated into the NUGAA. The former evolution makes the three resonance modes in GAA aligned, and thus the bandwidth is extended; meanwhile, this step introduces the radiation null (RN) at the lower operational band edge. The latter evolution generates the RN at the upper operational band-edge, which, together with the lower RN, leads to a skirt selectivity and preferable out-of-band rejection level; meanwhile, this step modifies the resonant mode in the higher band, and ensures a broadside radiation pattern with a consistent polarization. Finally, the optimized NUGAA with a compact size of <inline-formula> <tex-math notation="LaTeX">0.45\times 0.28\times 0.055\lambda _{0}^{3} </tex-math></inline-formula> is fabricated and measured, demonstrating excellent agreement with the simulation results. The proposed design achieves a bandwidth of 3.08-3.71 GHz (18.8%) with more than 21.5 dB out-of-band suppression level. Moreover, the bandwidth-to-volume ratio (BVR) reaches <inline-formula> <tex-math notation="LaTeX">0.027\times 10^{3} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">\lambda _{0}^{3} </tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2024.3413569</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0001-4957-6524</orcidid><orcidid>https://orcid.org/0000-0003-3859-1507</orcidid><orcidid>https://orcid.org/0000-0002-5528-1327</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2024-09, Vol.72 (9), p.7287-7292
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_10618977
source IEEE Electronic Library (IEL)
subjects Antenna arrays
Antennas
Bandwidth-to-volume ratio (BVR)
Bandwidths
Broadband
Broadband antennas
compact size
Dipole antennas
Evolution
filtering antenna
Filtration
Gallium arsenide
grid array antenna (GAA)
Microstrip antennas
Patch antennas
Radiation
Resonant frequency
Wideband
title Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Layer%20and%20Wideband%20Filtering%20Antenna%20With%20Small%20Footprint%20Based%20on%20Nonuniform%20Grid%20Array&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Lang,%20Yi-Lin&rft.date=2024-09-01&rft.volume=72&rft.issue=9&rft.spage=7287&rft.epage=7292&rft.pages=7287-7292&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2024.3413569&rft_dat=%3Cproquest_RIE%3E3101349390%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101349390&rft_id=info:pmid/&rft_ieee_id=10618977&rfr_iscdi=true