Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array
A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2024-09, Vol.72 (9), p.7287-7292 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7292 |
---|---|
container_issue | 9 |
container_start_page | 7287 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 72 |
creator | Lang, Yi-Lin Yi, Da Tang, Ming-Chun |
description | A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with a conventional microstrip patch antenna (MPA). Then, based on the analysis of these resonances in GAA, two evolution processes are implemented to improve the performance. On the one hand, the grid units are adjusted, i.e., the GAA turns into a nonuniform GAA (NUGAA). On the other hand, a coplanar L-probe and two pairs of short slots are integrated into the NUGAA. The former evolution makes the three resonance modes in GAA aligned, and thus the bandwidth is extended; meanwhile, this step introduces the radiation null (RN) at the lower operational band edge. The latter evolution generates the RN at the upper operational band-edge, which, together with the lower RN, leads to a skirt selectivity and preferable out-of-band rejection level; meanwhile, this step modifies the resonant mode in the higher band, and ensures a broadside radiation pattern with a consistent polarization. Finally, the optimized NUGAA with a compact size of 0.45\times 0.28\times 0.055\lambda _{0}^{3} is fabricated and measured, demonstrating excellent agreement with the simulation results. The proposed design achieves a bandwidth of 3.08-3.71 GHz (18.8%) with more than 21.5 dB out-of-band suppression level. Moreover, the bandwidth-to-volume ratio (BVR) reaches 0.027\times 10^{3} / \lambda _{0}^{3} . |
doi_str_mv | 10.1109/TAP.2024.3413569 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10618977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10618977</ieee_id><sourcerecordid>3101349390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-97344088e038769a58eace02c2ddebf53cb6600ce30dccc1b87a02014f1fc05e3</originalsourceid><addsrcrecordid>eNpNUD1PwzAQtRBIlMLOwGCJOeX8kcQeS0ULUgVILYLNcp0LpErt4qRD_z2u2oHp7vTeu7v3CLllMGIM9MNy_D7iwOVISCbyQp-RActzlXHO2TkZADCVaV58XZKrrlunUSopB8QsGv_dYja3e4zU-op-NhWuDs20aXuMCaZj36P3NkH9D11sbNvSaQj9NoE9fbQdVjR4-hr8zjd1iBs6i01FxzHa_TW5qG3b4c2pDsnH9Gk5ec7mb7OXyXieOVbmfaZLISUohSBUWWibK7QOgTtepW_qXLhVUQA4FFA559hKlRZ4MlGz2kGOYkjuj3u3MfzusOvNOuyiTyeNYMCE1EJDYsGR5WLouoi1SR42Nu4NA3OI0aQYzSFGc4oxSe6OkgYR_9ELpnRZij-P1m4p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101349390</pqid></control><display><type>article</type><title>Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array</title><source>IEEE Electronic Library (IEL)</source><creator>Lang, Yi-Lin ; Yi, Da ; Tang, Ming-Chun</creator><creatorcontrib>Lang, Yi-Lin ; Yi, Da ; Tang, Ming-Chun</creatorcontrib><description><![CDATA[A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with a conventional microstrip patch antenna (MPA). Then, based on the analysis of these resonances in GAA, two evolution processes are implemented to improve the performance. On the one hand, the grid units are adjusted, i.e., the GAA turns into a nonuniform GAA (NUGAA). On the other hand, a coplanar L-probe and two pairs of short slots are integrated into the NUGAA. The former evolution makes the three resonance modes in GAA aligned, and thus the bandwidth is extended; meanwhile, this step introduces the radiation null (RN) at the lower operational band edge. The latter evolution generates the RN at the upper operational band-edge, which, together with the lower RN, leads to a skirt selectivity and preferable out-of-band rejection level; meanwhile, this step modifies the resonant mode in the higher band, and ensures a broadside radiation pattern with a consistent polarization. Finally, the optimized NUGAA with a compact size of <inline-formula> <tex-math notation="LaTeX">0.45\times 0.28\times 0.055\lambda _{0}^{3} </tex-math></inline-formula> is fabricated and measured, demonstrating excellent agreement with the simulation results. The proposed design achieves a bandwidth of 3.08-3.71 GHz (18.8%) with more than 21.5 dB out-of-band suppression level. Moreover, the bandwidth-to-volume ratio (BVR) reaches <inline-formula> <tex-math notation="LaTeX">0.027\times 10^{3} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">\lambda _{0}^{3} </tex-math></inline-formula>.]]></description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2024.3413569</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Antennas ; Bandwidth-to-volume ratio (BVR) ; Bandwidths ; Broadband ; Broadband antennas ; compact size ; Dipole antennas ; Evolution ; filtering antenna ; Filtration ; Gallium arsenide ; grid array antenna (GAA) ; Microstrip antennas ; Patch antennas ; Radiation ; Resonant frequency ; Wideband</subject><ispartof>IEEE transactions on antennas and propagation, 2024-09, Vol.72 (9), p.7287-7292</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-97344088e038769a58eace02c2ddebf53cb6600ce30dccc1b87a02014f1fc05e3</cites><orcidid>0009-0001-4957-6524 ; 0000-0003-3859-1507 ; 0000-0002-5528-1327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10618977$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10618977$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lang, Yi-Lin</creatorcontrib><creatorcontrib>Yi, Da</creatorcontrib><creatorcontrib>Tang, Ming-Chun</creatorcontrib><title>Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description><![CDATA[A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with a conventional microstrip patch antenna (MPA). Then, based on the analysis of these resonances in GAA, two evolution processes are implemented to improve the performance. On the one hand, the grid units are adjusted, i.e., the GAA turns into a nonuniform GAA (NUGAA). On the other hand, a coplanar L-probe and two pairs of short slots are integrated into the NUGAA. The former evolution makes the three resonance modes in GAA aligned, and thus the bandwidth is extended; meanwhile, this step introduces the radiation null (RN) at the lower operational band edge. The latter evolution generates the RN at the upper operational band-edge, which, together with the lower RN, leads to a skirt selectivity and preferable out-of-band rejection level; meanwhile, this step modifies the resonant mode in the higher band, and ensures a broadside radiation pattern with a consistent polarization. Finally, the optimized NUGAA with a compact size of <inline-formula> <tex-math notation="LaTeX">0.45\times 0.28\times 0.055\lambda _{0}^{3} </tex-math></inline-formula> is fabricated and measured, demonstrating excellent agreement with the simulation results. The proposed design achieves a bandwidth of 3.08-3.71 GHz (18.8%) with more than 21.5 dB out-of-band suppression level. Moreover, the bandwidth-to-volume ratio (BVR) reaches <inline-formula> <tex-math notation="LaTeX">0.027\times 10^{3} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">\lambda _{0}^{3} </tex-math></inline-formula>.]]></description><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Bandwidth-to-volume ratio (BVR)</subject><subject>Bandwidths</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>compact size</subject><subject>Dipole antennas</subject><subject>Evolution</subject><subject>filtering antenna</subject><subject>Filtration</subject><subject>Gallium arsenide</subject><subject>grid array antenna (GAA)</subject><subject>Microstrip antennas</subject><subject>Patch antennas</subject><subject>Radiation</subject><subject>Resonant frequency</subject><subject>Wideband</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUD1PwzAQtRBIlMLOwGCJOeX8kcQeS0ULUgVILYLNcp0LpErt4qRD_z2u2oHp7vTeu7v3CLllMGIM9MNy_D7iwOVISCbyQp-RActzlXHO2TkZADCVaV58XZKrrlunUSopB8QsGv_dYja3e4zU-op-NhWuDs20aXuMCaZj36P3NkH9D11sbNvSaQj9NoE9fbQdVjR4-hr8zjd1iBs6i01FxzHa_TW5qG3b4c2pDsnH9Gk5ec7mb7OXyXieOVbmfaZLISUohSBUWWibK7QOgTtepW_qXLhVUQA4FFA559hKlRZ4MlGz2kGOYkjuj3u3MfzusOvNOuyiTyeNYMCE1EJDYsGR5WLouoi1SR42Nu4NA3OI0aQYzSFGc4oxSe6OkgYR_9ELpnRZij-P1m4p</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Lang, Yi-Lin</creator><creator>Yi, Da</creator><creator>Tang, Ming-Chun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0001-4957-6524</orcidid><orcidid>https://orcid.org/0000-0003-3859-1507</orcidid><orcidid>https://orcid.org/0000-0002-5528-1327</orcidid></search><sort><creationdate>20240901</creationdate><title>Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array</title><author>Lang, Yi-Lin ; Yi, Da ; Tang, Ming-Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-97344088e038769a58eace02c2ddebf53cb6600ce30dccc1b87a02014f1fc05e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Bandwidth-to-volume ratio (BVR)</topic><topic>Bandwidths</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>compact size</topic><topic>Dipole antennas</topic><topic>Evolution</topic><topic>filtering antenna</topic><topic>Filtration</topic><topic>Gallium arsenide</topic><topic>grid array antenna (GAA)</topic><topic>Microstrip antennas</topic><topic>Patch antennas</topic><topic>Radiation</topic><topic>Resonant frequency</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Yi-Lin</creatorcontrib><creatorcontrib>Yi, Da</creatorcontrib><creatorcontrib>Tang, Ming-Chun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lang, Yi-Lin</au><au>Yi, Da</au><au>Tang, Ming-Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>72</volume><issue>9</issue><spage>7287</spage><epage>7292</epage><pages>7287-7292</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract><![CDATA[A single-layer and wideband antenna with a small footprint and a good filtering response is developed based on the nonuniform grid array. First, the advantages of the conventional grid array antenna (GAA) in terms of miniaturization and closer multiresonances are demonstrated through comparison with a conventional microstrip patch antenna (MPA). Then, based on the analysis of these resonances in GAA, two evolution processes are implemented to improve the performance. On the one hand, the grid units are adjusted, i.e., the GAA turns into a nonuniform GAA (NUGAA). On the other hand, a coplanar L-probe and two pairs of short slots are integrated into the NUGAA. The former evolution makes the three resonance modes in GAA aligned, and thus the bandwidth is extended; meanwhile, this step introduces the radiation null (RN) at the lower operational band edge. The latter evolution generates the RN at the upper operational band-edge, which, together with the lower RN, leads to a skirt selectivity and preferable out-of-band rejection level; meanwhile, this step modifies the resonant mode in the higher band, and ensures a broadside radiation pattern with a consistent polarization. Finally, the optimized NUGAA with a compact size of <inline-formula> <tex-math notation="LaTeX">0.45\times 0.28\times 0.055\lambda _{0}^{3} </tex-math></inline-formula> is fabricated and measured, demonstrating excellent agreement with the simulation results. The proposed design achieves a bandwidth of 3.08-3.71 GHz (18.8%) with more than 21.5 dB out-of-band suppression level. Moreover, the bandwidth-to-volume ratio (BVR) reaches <inline-formula> <tex-math notation="LaTeX">0.027\times 10^{3} </tex-math></inline-formula>/<inline-formula> <tex-math notation="LaTeX">\lambda _{0}^{3} </tex-math></inline-formula>.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2024.3413569</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0001-4957-6524</orcidid><orcidid>https://orcid.org/0000-0003-3859-1507</orcidid><orcidid>https://orcid.org/0000-0002-5528-1327</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2024-09, Vol.72 (9), p.7287-7292 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_10618977 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna arrays Antennas Bandwidth-to-volume ratio (BVR) Bandwidths Broadband Broadband antennas compact size Dipole antennas Evolution filtering antenna Filtration Gallium arsenide grid array antenna (GAA) Microstrip antennas Patch antennas Radiation Resonant frequency Wideband |
title | Single-Layer and Wideband Filtering Antenna With Small Footprint Based on Nonuniform Grid Array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Layer%20and%20Wideband%20Filtering%20Antenna%20With%20Small%20Footprint%20Based%20on%20Nonuniform%20Grid%20Array&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Lang,%20Yi-Lin&rft.date=2024-09-01&rft.volume=72&rft.issue=9&rft.spage=7287&rft.epage=7292&rft.pages=7287-7292&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2024.3413569&rft_dat=%3Cproquest_RIE%3E3101349390%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101349390&rft_id=info:pmid/&rft_ieee_id=10618977&rfr_iscdi=true |