Detection of Radar Pulse Signals Based on Deep Learning
Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Fir...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of signal processing 2024, Vol.5, p.991-1004 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1004 |
---|---|
container_issue | |
container_start_page | 991 |
container_title | IEEE open journal of signal processing |
container_volume | 5 |
creator | Gu, Fengyang Zhang, Luxin Zheng, Shilian Chen, Jie Yue, Keqiang Zhao, Zhijin Yang, Xiaoniu |
description | Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity. |
doi_str_mv | 10.1109/OJSP.2024.3435703 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10614929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10614929</ieee_id><doaj_id>oai_doaj_org_article_d75614e8528f4c219e95be63036de270</doaj_id><sourcerecordid>3106513253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-ab67c436f2c25eecd4cd85d2896ce6feb36eb845d695c2fe8c3a10229178894c3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpByCxiMQ6xR4_Yi-hvIoqtaKwthx7UqUqSXHSBX9PQirU1Yzm3nkdQq4ZnTJGzd3ybb2aAgUx5YLLjPIzMgIlRMo4wPlJfkkmTbOllIJkrCuMSPaILfq2rKukLpJ3F1xMVoddg8m63FRu1yQPrsGQdPoj4j5ZoItVWW2uyEXRqTg5xjH5fH76mL2mi-XLfHa_SD1o2aYuV5kXXBXgQSL6IHzQMoA2yqMqMOcKcy1kUEZ6KFB77hgFMCzT2gjPx2Q-zA2129p9LL9c_LG1K-1foY4b62Jb-h3akEnFBGoJuhAemEEjc1ScchUQOipjcjvM2sf6-4BNa7f1IfZPWs6okh0QyTsXG1w-1k0Tsfjfyqjtcdset-1x2yPurudm6CkR8cTf3WPA8F8FyniB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106513253</pqid></control><display><type>article</type><title>Detection of Radar Pulse Signals Based on Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gu, Fengyang ; Zhang, Luxin ; Zheng, Shilian ; Chen, Jie ; Yue, Keqiang ; Zhao, Zhijin ; Yang, Xiaoniu</creator><creatorcontrib>Gu, Fengyang ; Zhang, Luxin ; Zheng, Shilian ; Chen, Jie ; Yue, Keqiang ; Zhao, Zhijin ; Yang, Xiaoniu</creatorcontrib><description>Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity.</description><identifier>ISSN: 2644-1322</identifier><identifier>EISSN: 2644-1322</identifier><identifier>DOI: 10.1109/OJSP.2024.3435703</identifier><identifier>CODEN: IOJSAF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cognitive radio ; Complexity ; convolutional neural network ; Deep learning ; downsampling ; Electronic warfare ; Feature extraction ; Fourier transforms ; Machine learning ; Military aviation ; Noise ; Quadratures ; Radar ; Radar detection ; radar pulse signal ; Radio signals ; Signal detection ; Signal processing</subject><ispartof>IEEE open journal of signal processing, 2024, Vol.5, p.991-1004</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-ab67c436f2c25eecd4cd85d2896ce6feb36eb845d695c2fe8c3a10229178894c3</cites><orcidid>0000-0002-3089-4346 ; 0009-0000-1290-9199 ; 0009-0009-8412-1400 ; 0000-0003-3117-2211 ; 0000-0002-5408-0574 ; 0000-0002-3121-0364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10614929$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Gu, Fengyang</creatorcontrib><creatorcontrib>Zhang, Luxin</creatorcontrib><creatorcontrib>Zheng, Shilian</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Yue, Keqiang</creatorcontrib><creatorcontrib>Zhao, Zhijin</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><title>Detection of Radar Pulse Signals Based on Deep Learning</title><title>IEEE open journal of signal processing</title><addtitle>OJSP</addtitle><description>Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity.</description><subject>Artificial neural networks</subject><subject>Cognitive radio</subject><subject>Complexity</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>downsampling</subject><subject>Electronic warfare</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Machine learning</subject><subject>Military aviation</subject><subject>Noise</subject><subject>Quadratures</subject><subject>Radar</subject><subject>Radar detection</subject><subject>radar pulse signal</subject><subject>Radio signals</subject><subject>Signal detection</subject><subject>Signal processing</subject><issn>2644-1322</issn><issn>2644-1322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRS0EElXpByCxiMQ6xR4_Yi-hvIoqtaKwthx7UqUqSXHSBX9PQirU1Yzm3nkdQq4ZnTJGzd3ybb2aAgUx5YLLjPIzMgIlRMo4wPlJfkkmTbOllIJkrCuMSPaILfq2rKukLpJ3F1xMVoddg8m63FRu1yQPrsGQdPoj4j5ZoItVWW2uyEXRqTg5xjH5fH76mL2mi-XLfHa_SD1o2aYuV5kXXBXgQSL6IHzQMoA2yqMqMOcKcy1kUEZ6KFB77hgFMCzT2gjPx2Q-zA2129p9LL9c_LG1K-1foY4b62Jb-h3akEnFBGoJuhAemEEjc1ScchUQOipjcjvM2sf6-4BNa7f1IfZPWs6okh0QyTsXG1w-1k0Tsfjfyqjtcdset-1x2yPurudm6CkR8cTf3WPA8F8FyniB</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gu, Fengyang</creator><creator>Zhang, Luxin</creator><creator>Zheng, Shilian</creator><creator>Chen, Jie</creator><creator>Yue, Keqiang</creator><creator>Zhao, Zhijin</creator><creator>Yang, Xiaoniu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3089-4346</orcidid><orcidid>https://orcid.org/0009-0000-1290-9199</orcidid><orcidid>https://orcid.org/0009-0009-8412-1400</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid><orcidid>https://orcid.org/0000-0002-5408-0574</orcidid><orcidid>https://orcid.org/0000-0002-3121-0364</orcidid></search><sort><creationdate>2024</creationdate><title>Detection of Radar Pulse Signals Based on Deep Learning</title><author>Gu, Fengyang ; Zhang, Luxin ; Zheng, Shilian ; Chen, Jie ; Yue, Keqiang ; Zhao, Zhijin ; Yang, Xiaoniu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-ab67c436f2c25eecd4cd85d2896ce6feb36eb845d695c2fe8c3a10229178894c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Cognitive radio</topic><topic>Complexity</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>downsampling</topic><topic>Electronic warfare</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Machine learning</topic><topic>Military aviation</topic><topic>Noise</topic><topic>Quadratures</topic><topic>Radar</topic><topic>Radar detection</topic><topic>radar pulse signal</topic><topic>Radio signals</topic><topic>Signal detection</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Fengyang</creatorcontrib><creatorcontrib>Zhang, Luxin</creatorcontrib><creatorcontrib>Zheng, Shilian</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Yue, Keqiang</creatorcontrib><creatorcontrib>Zhao, Zhijin</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Fengyang</au><au>Zhang, Luxin</au><au>Zheng, Shilian</au><au>Chen, Jie</au><au>Yue, Keqiang</au><au>Zhao, Zhijin</au><au>Yang, Xiaoniu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Radar Pulse Signals Based on Deep Learning</atitle><jtitle>IEEE open journal of signal processing</jtitle><stitle>OJSP</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>991</spage><epage>1004</epage><pages>991-1004</pages><issn>2644-1322</issn><eissn>2644-1322</eissn><coden>IOJSAF</coden><abstract>Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJSP.2024.3435703</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3089-4346</orcidid><orcidid>https://orcid.org/0009-0000-1290-9199</orcidid><orcidid>https://orcid.org/0009-0009-8412-1400</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid><orcidid>https://orcid.org/0000-0002-5408-0574</orcidid><orcidid>https://orcid.org/0000-0002-3121-0364</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1322 |
ispartof | IEEE open journal of signal processing, 2024, Vol.5, p.991-1004 |
issn | 2644-1322 2644-1322 |
language | eng |
recordid | cdi_ieee_primary_10614929 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Cognitive radio Complexity convolutional neural network Deep learning downsampling Electronic warfare Feature extraction Fourier transforms Machine learning Military aviation Noise Quadratures Radar Radar detection radar pulse signal Radio signals Signal detection Signal processing |
title | Detection of Radar Pulse Signals Based on Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Radar%20Pulse%20Signals%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20open%20journal%20of%20signal%20processing&rft.au=Gu,%20Fengyang&rft.date=2024&rft.volume=5&rft.spage=991&rft.epage=1004&rft.pages=991-1004&rft.issn=2644-1322&rft.eissn=2644-1322&rft.coden=IOJSAF&rft_id=info:doi/10.1109/OJSP.2024.3435703&rft_dat=%3Cproquest_ieee_%3E3106513253%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106513253&rft_id=info:pmid/&rft_ieee_id=10614929&rft_doaj_id=oai_doaj_org_article_d75614e8528f4c219e95be63036de270&rfr_iscdi=true |