Detection of Radar Pulse Signals Based on Deep Learning

Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of signal processing 2024, Vol.5, p.991-1004
Hauptverfasser: Gu, Fengyang, Zhang, Luxin, Zheng, Shilian, Chen, Jie, Yue, Keqiang, Zhao, Zhijin, Yang, Xiaoniu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue
container_start_page 991
container_title IEEE open journal of signal processing
container_volume 5
creator Gu, Fengyang
Zhang, Luxin
Zheng, Shilian
Chen, Jie
Yue, Keqiang
Zhao, Zhijin
Yang, Xiaoniu
description Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity.
doi_str_mv 10.1109/OJSP.2024.3435703
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10614929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10614929</ieee_id><doaj_id>oai_doaj_org_article_d75614e8528f4c219e95be63036de270</doaj_id><sourcerecordid>3106513253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-ab67c436f2c25eecd4cd85d2896ce6feb36eb845d695c2fe8c3a10229178894c3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpByCxiMQ6xR4_Yi-hvIoqtaKwthx7UqUqSXHSBX9PQirU1Yzm3nkdQq4ZnTJGzd3ybb2aAgUx5YLLjPIzMgIlRMo4wPlJfkkmTbOllIJkrCuMSPaILfq2rKukLpJ3F1xMVoddg8m63FRu1yQPrsGQdPoj4j5ZoItVWW2uyEXRqTg5xjH5fH76mL2mi-XLfHa_SD1o2aYuV5kXXBXgQSL6IHzQMoA2yqMqMOcKcy1kUEZ6KFB77hgFMCzT2gjPx2Q-zA2129p9LL9c_LG1K-1foY4b62Jb-h3akEnFBGoJuhAemEEjc1ScchUQOipjcjvM2sf6-4BNa7f1IfZPWs6okh0QyTsXG1w-1k0Tsfjfyqjtcdset-1x2yPurudm6CkR8cTf3WPA8F8FyniB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106513253</pqid></control><display><type>article</type><title>Detection of Radar Pulse Signals Based on Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gu, Fengyang ; Zhang, Luxin ; Zheng, Shilian ; Chen, Jie ; Yue, Keqiang ; Zhao, Zhijin ; Yang, Xiaoniu</creator><creatorcontrib>Gu, Fengyang ; Zhang, Luxin ; Zheng, Shilian ; Chen, Jie ; Yue, Keqiang ; Zhao, Zhijin ; Yang, Xiaoniu</creatorcontrib><description>Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity.</description><identifier>ISSN: 2644-1322</identifier><identifier>EISSN: 2644-1322</identifier><identifier>DOI: 10.1109/OJSP.2024.3435703</identifier><identifier>CODEN: IOJSAF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cognitive radio ; Complexity ; convolutional neural network ; Deep learning ; downsampling ; Electronic warfare ; Feature extraction ; Fourier transforms ; Machine learning ; Military aviation ; Noise ; Quadratures ; Radar ; Radar detection ; radar pulse signal ; Radio signals ; Signal detection ; Signal processing</subject><ispartof>IEEE open journal of signal processing, 2024, Vol.5, p.991-1004</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285t-ab67c436f2c25eecd4cd85d2896ce6feb36eb845d695c2fe8c3a10229178894c3</cites><orcidid>0000-0002-3089-4346 ; 0009-0000-1290-9199 ; 0009-0009-8412-1400 ; 0000-0003-3117-2211 ; 0000-0002-5408-0574 ; 0000-0002-3121-0364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10614929$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Gu, Fengyang</creatorcontrib><creatorcontrib>Zhang, Luxin</creatorcontrib><creatorcontrib>Zheng, Shilian</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Yue, Keqiang</creatorcontrib><creatorcontrib>Zhao, Zhijin</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><title>Detection of Radar Pulse Signals Based on Deep Learning</title><title>IEEE open journal of signal processing</title><addtitle>OJSP</addtitle><description>Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity.</description><subject>Artificial neural networks</subject><subject>Cognitive radio</subject><subject>Complexity</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>downsampling</subject><subject>Electronic warfare</subject><subject>Feature extraction</subject><subject>Fourier transforms</subject><subject>Machine learning</subject><subject>Military aviation</subject><subject>Noise</subject><subject>Quadratures</subject><subject>Radar</subject><subject>Radar detection</subject><subject>radar pulse signal</subject><subject>Radio signals</subject><subject>Signal detection</subject><subject>Signal processing</subject><issn>2644-1322</issn><issn>2644-1322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkMtOwzAQRS0EElXpByCxiMQ6xR4_Yi-hvIoqtaKwthx7UqUqSXHSBX9PQirU1Yzm3nkdQq4ZnTJGzd3ybb2aAgUx5YLLjPIzMgIlRMo4wPlJfkkmTbOllIJkrCuMSPaILfq2rKukLpJ3F1xMVoddg8m63FRu1yQPrsGQdPoj4j5ZoItVWW2uyEXRqTg5xjH5fH76mL2mi-XLfHa_SD1o2aYuV5kXXBXgQSL6IHzQMoA2yqMqMOcKcy1kUEZ6KFB77hgFMCzT2gjPx2Q-zA2129p9LL9c_LG1K-1foY4b62Jb-h3akEnFBGoJuhAemEEjc1ScchUQOipjcjvM2sf6-4BNa7f1IfZPWs6okh0QyTsXG1w-1k0Tsfjfyqjtcdset-1x2yPurudm6CkR8cTf3WPA8F8FyniB</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Gu, Fengyang</creator><creator>Zhang, Luxin</creator><creator>Zheng, Shilian</creator><creator>Chen, Jie</creator><creator>Yue, Keqiang</creator><creator>Zhao, Zhijin</creator><creator>Yang, Xiaoniu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3089-4346</orcidid><orcidid>https://orcid.org/0009-0000-1290-9199</orcidid><orcidid>https://orcid.org/0009-0009-8412-1400</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid><orcidid>https://orcid.org/0000-0002-5408-0574</orcidid><orcidid>https://orcid.org/0000-0002-3121-0364</orcidid></search><sort><creationdate>2024</creationdate><title>Detection of Radar Pulse Signals Based on Deep Learning</title><author>Gu, Fengyang ; Zhang, Luxin ; Zheng, Shilian ; Chen, Jie ; Yue, Keqiang ; Zhao, Zhijin ; Yang, Xiaoniu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-ab67c436f2c25eecd4cd85d2896ce6feb36eb845d695c2fe8c3a10229178894c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Cognitive radio</topic><topic>Complexity</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>downsampling</topic><topic>Electronic warfare</topic><topic>Feature extraction</topic><topic>Fourier transforms</topic><topic>Machine learning</topic><topic>Military aviation</topic><topic>Noise</topic><topic>Quadratures</topic><topic>Radar</topic><topic>Radar detection</topic><topic>radar pulse signal</topic><topic>Radio signals</topic><topic>Signal detection</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Fengyang</creatorcontrib><creatorcontrib>Zhang, Luxin</creatorcontrib><creatorcontrib>Zheng, Shilian</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Yue, Keqiang</creatorcontrib><creatorcontrib>Zhao, Zhijin</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Fengyang</au><au>Zhang, Luxin</au><au>Zheng, Shilian</au><au>Chen, Jie</au><au>Yue, Keqiang</au><au>Zhao, Zhijin</au><au>Yang, Xiaoniu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Radar Pulse Signals Based on Deep Learning</atitle><jtitle>IEEE open journal of signal processing</jtitle><stitle>OJSP</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>991</spage><epage>1004</epage><pages>991-1004</pages><issn>2644-1322</issn><eissn>2644-1322</eissn><coden>IOJSAF</coden><abstract>Radar is widely used in aviation, meteorology, and military fields, and radar pulse signal detection has become an indispensable and essential function of cognitive radio systems as well as electronic warfare systems. In this paper, we propose a deep learning-based radar signal detection method. Firstly, we propose a detection method based on raw in-phase and quadrature (IQ) input, which utilizes a convolutional neural network (CNN) to automatically learn the features of radar pulse signals and noises, to accomplish the detection task. To further reduce the computational complexity, we also propose a hybrid detection method that combines compressed sensing (CS) and deep learning, which reduces the length of the signal by compressed downsampling, and then feeds the compressed signal to the CNN for detection. Extensive simulation results show that our proposed IQ-based method outperforms the traditional short-time Fourier transform method as well as three existing deep learning-based detection methods in terms of probability of detection. Furthermore, our proposed IQ-CS-based method can achieve satisfactory detection performance with significantly reduced computational complexity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJSP.2024.3435703</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3089-4346</orcidid><orcidid>https://orcid.org/0009-0000-1290-9199</orcidid><orcidid>https://orcid.org/0009-0009-8412-1400</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid><orcidid>https://orcid.org/0000-0002-5408-0574</orcidid><orcidid>https://orcid.org/0000-0002-3121-0364</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1322
ispartof IEEE open journal of signal processing, 2024, Vol.5, p.991-1004
issn 2644-1322
2644-1322
language eng
recordid cdi_ieee_primary_10614929
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Cognitive radio
Complexity
convolutional neural network
Deep learning
downsampling
Electronic warfare
Feature extraction
Fourier transforms
Machine learning
Military aviation
Noise
Quadratures
Radar
Radar detection
radar pulse signal
Radio signals
Signal detection
Signal processing
title Detection of Radar Pulse Signals Based on Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Radar%20Pulse%20Signals%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20open%20journal%20of%20signal%20processing&rft.au=Gu,%20Fengyang&rft.date=2024&rft.volume=5&rft.spage=991&rft.epage=1004&rft.pages=991-1004&rft.issn=2644-1322&rft.eissn=2644-1322&rft.coden=IOJSAF&rft_id=info:doi/10.1109/OJSP.2024.3435703&rft_dat=%3Cproquest_ieee_%3E3106513253%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106513253&rft_id=info:pmid/&rft_ieee_id=10614929&rft_doaj_id=oai_doaj_org_article_d75614e8528f4c219e95be63036de270&rfr_iscdi=true