Online Recruitment Fraud (ORF) Detection Using Deep Learning Approaches
Most companies nowadays are using digital platforms for the recruitment of new employees to make the hiring process easier. The rapid increase in the use of online platforms for job posting has resulted in fraudulent advertising. The scammers are making money through fraudulent job postings. Online...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.109388-109408 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109408 |
---|---|
container_issue | |
container_start_page | 109388 |
container_title | IEEE access |
container_volume | 12 |
creator | Akram, Natasha Irfan, Rabia Al-Shamayleh, Ahmad Sami Kousar, Adila Qaddos, Abdul Imran, Muhammad Akhunzada, Adnan |
description | Most companies nowadays are using digital platforms for the recruitment of new employees to make the hiring process easier. The rapid increase in the use of online platforms for job posting has resulted in fraudulent advertising. The scammers are making money through fraudulent job postings. Online recruitment fraud has emerged as an important issue in cybercrime. Therefore, it is necessary to detect fake job postings to get rid of online job scams. In recent studies, traditional machine learning and deep learning algorithms have been implemented to detect fake job postings; this research aims to use two transformer-based deep learning models, i.e., Bidirectional Encoder Representations from Transformers (BERT) and Robustly Optimized BERT-Pretraining Approach (RoBERTa) to detect fake job postings precisely. In this research, a novel dataset of fake job postings is proposed, formed by the combination of job postings from three different sources. Existing benchmark datasets are outdated and limited due to knowledge of specific job postings, which limits the existing models' capability in detecting fraudulent jobs. Hence, we extend it with the latest job postings. Exploratory Data Analysis (EDA) highlights the class imbalance problem in detecting fake jobs, which tends the model to act aggressively toward the minority class. Responding to overcome this problem, the work at hand implements ten top-performing Synthetic Minority Oversampling Technique (SMOTE) variants. The models' performances balanced by each SMOTE variant are analyzed and compared. All implemented approaches are performed competitively. However, BERT+SMOBD SMOTE achieved the highest balanced accuracy and recall of about 90%. |
doi_str_mv | 10.1109/ACCESS.2024.3435670 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10614582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10614582</ieee_id><doaj_id>oai_doaj_org_article_aa7a0146d8724e668e9340a26bdcc1bd</doaj_id><sourcerecordid>3092917872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a8ce50eb67bea1c722d66d748e154198ce783ffd1432d2b1058787744fa4ea2f3</originalsourceid><addsrcrecordid>eNpNUU1PwkAQ3RhNJMgv0EMTL3oo7ld3t0dSAUlISEDOm-3uFEugrdty8N-7WGKYy3y-NzN5CD0SPCYEp2-TLJtuNmOKKR8zzhIh8Q0aUCLSmCVM3F7F92jUtnscTIVSIgdovqoOZQXRGqw_ld0Rqi6aeXNy0ctqPXuN3qED25V1FW3bstqFHJpoCcZX52zSNL429gvaB3RXmEMLo4sfou1s-pl9xMvVfJFNlrFlhHexURYSDLmQORhiJaVOCCe5ApJwkoauVKwoHOGMOpoTnCippOS8MBwMLdgQLXpeV5u9bnx5NP5H16bUf4Xa77TxXWkPoI2RBhMunJKUgxAKUsaxoSJ31pLcBa7nnis88X2CttP7-uSrcL5mOKUpCatpmGL9lPV123oo_rcSrM8C6F4AfRZAXwQIqKceVQLAFUIQnijKfgEle3_L</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092917872</pqid></control><display><type>article</type><title>Online Recruitment Fraud (ORF) Detection Using Deep Learning Approaches</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Akram, Natasha ; Irfan, Rabia ; Al-Shamayleh, Ahmad Sami ; Kousar, Adila ; Qaddos, Abdul ; Imran, Muhammad ; Akhunzada, Adnan</creator><creatorcontrib>Akram, Natasha ; Irfan, Rabia ; Al-Shamayleh, Ahmad Sami ; Kousar, Adila ; Qaddos, Abdul ; Imran, Muhammad ; Akhunzada, Adnan</creatorcontrib><description>Most companies nowadays are using digital platforms for the recruitment of new employees to make the hiring process easier. The rapid increase in the use of online platforms for job posting has resulted in fraudulent advertising. The scammers are making money through fraudulent job postings. Online recruitment fraud has emerged as an important issue in cybercrime. Therefore, it is necessary to detect fake job postings to get rid of online job scams. In recent studies, traditional machine learning and deep learning algorithms have been implemented to detect fake job postings; this research aims to use two transformer-based deep learning models, i.e., Bidirectional Encoder Representations from Transformers (BERT) and Robustly Optimized BERT-Pretraining Approach (RoBERTa) to detect fake job postings precisely. In this research, a novel dataset of fake job postings is proposed, formed by the combination of job postings from three different sources. Existing benchmark datasets are outdated and limited due to knowledge of specific job postings, which limits the existing models' capability in detecting fraudulent jobs. Hence, we extend it with the latest job postings. Exploratory Data Analysis (EDA) highlights the class imbalance problem in detecting fake jobs, which tends the model to act aggressively toward the minority class. Responding to overcome this problem, the work at hand implements ten top-performing Synthetic Minority Oversampling Technique (SMOTE) variants. The models' performances balanced by each SMOTE variant are analyzed and compared. All implemented approaches are performed competitively. However, BERT+SMOBD SMOTE achieved the highest balanced accuracy and recall of about 90%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3435670</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Class imbalance ; Classification tree analysis ; Corporate learning ; Data analysis ; Data augmentation ; Datasets ; Deep learning ; Employment ; employment scam ; Fraud ; fraud detection ; Machine learning ; Nearest neighbor methods ; online recruitment ; Online services ; Personnel ; Recruitment ; SMOTE ; transformer-based models ; Transformers</subject><ispartof>IEEE access, 2024, Vol.12, p.109388-109408</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-a8ce50eb67bea1c722d66d748e154198ce783ffd1432d2b1058787744fa4ea2f3</cites><orcidid>0009-0004-4649-6475 ; 0000-0001-8370-9290 ; 0000-0002-2719-9852 ; 0000-0002-7222-2433 ; 0009-0008-4265-2660 ; 0009-0002-6627-5931 ; 0000-0003-4184-6603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10614582$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Akram, Natasha</creatorcontrib><creatorcontrib>Irfan, Rabia</creatorcontrib><creatorcontrib>Al-Shamayleh, Ahmad Sami</creatorcontrib><creatorcontrib>Kousar, Adila</creatorcontrib><creatorcontrib>Qaddos, Abdul</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Akhunzada, Adnan</creatorcontrib><title>Online Recruitment Fraud (ORF) Detection Using Deep Learning Approaches</title><title>IEEE access</title><addtitle>Access</addtitle><description>Most companies nowadays are using digital platforms for the recruitment of new employees to make the hiring process easier. The rapid increase in the use of online platforms for job posting has resulted in fraudulent advertising. The scammers are making money through fraudulent job postings. Online recruitment fraud has emerged as an important issue in cybercrime. Therefore, it is necessary to detect fake job postings to get rid of online job scams. In recent studies, traditional machine learning and deep learning algorithms have been implemented to detect fake job postings; this research aims to use two transformer-based deep learning models, i.e., Bidirectional Encoder Representations from Transformers (BERT) and Robustly Optimized BERT-Pretraining Approach (RoBERTa) to detect fake job postings precisely. In this research, a novel dataset of fake job postings is proposed, formed by the combination of job postings from three different sources. Existing benchmark datasets are outdated and limited due to knowledge of specific job postings, which limits the existing models' capability in detecting fraudulent jobs. Hence, we extend it with the latest job postings. Exploratory Data Analysis (EDA) highlights the class imbalance problem in detecting fake jobs, which tends the model to act aggressively toward the minority class. Responding to overcome this problem, the work at hand implements ten top-performing Synthetic Minority Oversampling Technique (SMOTE) variants. The models' performances balanced by each SMOTE variant are analyzed and compared. All implemented approaches are performed competitively. However, BERT+SMOBD SMOTE achieved the highest balanced accuracy and recall of about 90%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Class imbalance</subject><subject>Classification tree analysis</subject><subject>Corporate learning</subject><subject>Data analysis</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Employment</subject><subject>employment scam</subject><subject>Fraud</subject><subject>fraud detection</subject><subject>Machine learning</subject><subject>Nearest neighbor methods</subject><subject>online recruitment</subject><subject>Online services</subject><subject>Personnel</subject><subject>Recruitment</subject><subject>SMOTE</subject><subject>transformer-based models</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQ3RhNJMgv0EMTL3oo7ld3t0dSAUlISEDOm-3uFEugrdty8N-7WGKYy3y-NzN5CD0SPCYEp2-TLJtuNmOKKR8zzhIh8Q0aUCLSmCVM3F7F92jUtnscTIVSIgdovqoOZQXRGqw_ld0Rqi6aeXNy0ctqPXuN3qED25V1FW3bstqFHJpoCcZX52zSNL429gvaB3RXmEMLo4sfou1s-pl9xMvVfJFNlrFlhHexURYSDLmQORhiJaVOCCe5ApJwkoauVKwoHOGMOpoTnCippOS8MBwMLdgQLXpeV5u9bnx5NP5H16bUf4Xa77TxXWkPoI2RBhMunJKUgxAKUsaxoSJ31pLcBa7nnis88X2CttP7-uSrcL5mOKUpCatpmGL9lPV123oo_rcSrM8C6F4AfRZAXwQIqKceVQLAFUIQnijKfgEle3_L</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Akram, Natasha</creator><creator>Irfan, Rabia</creator><creator>Al-Shamayleh, Ahmad Sami</creator><creator>Kousar, Adila</creator><creator>Qaddos, Abdul</creator><creator>Imran, Muhammad</creator><creator>Akhunzada, Adnan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0004-4649-6475</orcidid><orcidid>https://orcid.org/0000-0001-8370-9290</orcidid><orcidid>https://orcid.org/0000-0002-2719-9852</orcidid><orcidid>https://orcid.org/0000-0002-7222-2433</orcidid><orcidid>https://orcid.org/0009-0008-4265-2660</orcidid><orcidid>https://orcid.org/0009-0002-6627-5931</orcidid><orcidid>https://orcid.org/0000-0003-4184-6603</orcidid></search><sort><creationdate>2024</creationdate><title>Online Recruitment Fraud (ORF) Detection Using Deep Learning Approaches</title><author>Akram, Natasha ; Irfan, Rabia ; Al-Shamayleh, Ahmad Sami ; Kousar, Adila ; Qaddos, Abdul ; Imran, Muhammad ; Akhunzada, Adnan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a8ce50eb67bea1c722d66d748e154198ce783ffd1432d2b1058787744fa4ea2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Class imbalance</topic><topic>Classification tree analysis</topic><topic>Corporate learning</topic><topic>Data analysis</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Employment</topic><topic>employment scam</topic><topic>Fraud</topic><topic>fraud detection</topic><topic>Machine learning</topic><topic>Nearest neighbor methods</topic><topic>online recruitment</topic><topic>Online services</topic><topic>Personnel</topic><topic>Recruitment</topic><topic>SMOTE</topic><topic>transformer-based models</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akram, Natasha</creatorcontrib><creatorcontrib>Irfan, Rabia</creatorcontrib><creatorcontrib>Al-Shamayleh, Ahmad Sami</creatorcontrib><creatorcontrib>Kousar, Adila</creatorcontrib><creatorcontrib>Qaddos, Abdul</creatorcontrib><creatorcontrib>Imran, Muhammad</creatorcontrib><creatorcontrib>Akhunzada, Adnan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akram, Natasha</au><au>Irfan, Rabia</au><au>Al-Shamayleh, Ahmad Sami</au><au>Kousar, Adila</au><au>Qaddos, Abdul</au><au>Imran, Muhammad</au><au>Akhunzada, Adnan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Recruitment Fraud (ORF) Detection Using Deep Learning Approaches</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>109388</spage><epage>109408</epage><pages>109388-109408</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Most companies nowadays are using digital platforms for the recruitment of new employees to make the hiring process easier. The rapid increase in the use of online platforms for job posting has resulted in fraudulent advertising. The scammers are making money through fraudulent job postings. Online recruitment fraud has emerged as an important issue in cybercrime. Therefore, it is necessary to detect fake job postings to get rid of online job scams. In recent studies, traditional machine learning and deep learning algorithms have been implemented to detect fake job postings; this research aims to use two transformer-based deep learning models, i.e., Bidirectional Encoder Representations from Transformers (BERT) and Robustly Optimized BERT-Pretraining Approach (RoBERTa) to detect fake job postings precisely. In this research, a novel dataset of fake job postings is proposed, formed by the combination of job postings from three different sources. Existing benchmark datasets are outdated and limited due to knowledge of specific job postings, which limits the existing models' capability in detecting fraudulent jobs. Hence, we extend it with the latest job postings. Exploratory Data Analysis (EDA) highlights the class imbalance problem in detecting fake jobs, which tends the model to act aggressively toward the minority class. Responding to overcome this problem, the work at hand implements ten top-performing Synthetic Minority Oversampling Technique (SMOTE) variants. The models' performances balanced by each SMOTE variant are analyzed and compared. All implemented approaches are performed competitively. However, BERT+SMOBD SMOTE achieved the highest balanced accuracy and recall of about 90%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3435670</doi><tpages>21</tpages><orcidid>https://orcid.org/0009-0004-4649-6475</orcidid><orcidid>https://orcid.org/0000-0001-8370-9290</orcidid><orcidid>https://orcid.org/0000-0002-2719-9852</orcidid><orcidid>https://orcid.org/0000-0002-7222-2433</orcidid><orcidid>https://orcid.org/0009-0008-4265-2660</orcidid><orcidid>https://orcid.org/0009-0002-6627-5931</orcidid><orcidid>https://orcid.org/0000-0003-4184-6603</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.109388-109408 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10614582 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Class imbalance Classification tree analysis Corporate learning Data analysis Data augmentation Datasets Deep learning Employment employment scam Fraud fraud detection Machine learning Nearest neighbor methods online recruitment Online services Personnel Recruitment SMOTE transformer-based models Transformers |
title | Online Recruitment Fraud (ORF) Detection Using Deep Learning Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Recruitment%20Fraud%20(ORF)%20Detection%20Using%20Deep%20Learning%20Approaches&rft.jtitle=IEEE%20access&rft.au=Akram,%20Natasha&rft.date=2024&rft.volume=12&rft.spage=109388&rft.epage=109408&rft.pages=109388-109408&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3435670&rft_dat=%3Cproquest_ieee_%3E3092917872%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092917872&rft_id=info:pmid/&rft_ieee_id=10614582&rft_doaj_id=oai_doaj_org_article_aa7a0146d8724e668e9340a26bdcc1bd&rfr_iscdi=true |