Explainable Fuzzy Deep Learning for Prediction of Epileptic Seizures Using EEG

Addressing the challenge posed by the unpredictable and recurrent nature of epileptic seizures, which stand among the most significant neurological conditions, remains imperative, especially within settings inundated with high patient flow. The prompt identification of these seizures is paramount fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2024-10, Vol.32 (10), p.5428-5437
Hauptverfasser: Khan, Faiq Ahmad, Umar, Zainab, Jolfaei, Alireza, Tariq, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5437
container_issue 10
container_start_page 5428
container_title IEEE transactions on fuzzy systems
container_volume 32
creator Khan, Faiq Ahmad
Umar, Zainab
Jolfaei, Alireza
Tariq, Muhammad
description Addressing the challenge posed by the unpredictable and recurrent nature of epileptic seizures, which stand among the most significant neurological conditions, remains imperative, especially within settings inundated with high patient flow. The prompt identification of these seizures is paramount for effective patient care. Unfortunately, existing epilepsy seizure detection systems encounter limitations in availability and interpretability, thereby constraining their reliability and widespread application. Presently, neurophysiologists heavily rely on visually interpreting electroencephalogram (EEG) recordings displayed on screens to identify seizures. This article introduces an innovative method dedicated to detecting epileptic seizures within EEG signals, leveraging a specifically tailored fuzzy deep learning (FDL) architecture. The proposed methodology encompasses crucial stages of preprocessing and feature extraction, augmented by the utilization of explainable artificial intelligence models, such as local interpretable model-agnostic explanations (LIME) and Shapley additive explanation (SHAP) for enhancing model interpretability. The developed FDL model demonstrates promising results, achieving a noteworthy accuracy of 92.57%, precision of 0.96 for "normal" and 0.89 for "abnormal," recall of 0.91 for "normal" and 0.94 for "abnormal," and F1-score of 0.93 for "normal" and 0.91 for "abnormal," affirming its robustness in classification tasks. In addition, to validate the effectiveness of the proposed FDL, comparisons are performed with long-short term memory networks and 1-D convolutional neural network model models. The integration of LIME and SHAP significantly enhances the interpretability of the model, providing valuable insights into influential features. This comprehensive framework adeptly balances accuracy and interpretability, thereby making a substantial stride in advancing EEG-based diagnostic tools.
doi_str_mv 10.1109/TFUZZ.2024.3434709
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10613429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10613429</ieee_id><sourcerecordid>10_1109_TFUZZ_2024_3434709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-4793748e8b0d3fd79104592341e33f243f5ab03b2ee3ceb0dcdf74b9e4aea4783</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqXwA4jBP5Bi-73G8YhKWpAqQKJdukRO8oyMQhLZrUT79W1pB6Z7h3vucBi7l2IkpTCPi-lytRopoXAECKiFuWADaVAmQgBeHrpIIUm1SK_ZTYzfQkgcy2zA3vLfvrG-tWVDfLrZ7bb8majnc7Kh9e0Xd13gH4FqX6191_LO8bz3DfVrX_FP8rtNoMiX8TjN89ktu3K2iXR3ziFbTvPF5CWZv89eJ0_zpFLSrBPUBjRmlJWiBldrIwWOjQKUBOAUghvbUkCpiKCiw6iqncbSEFqyqDMYMnX6rUIXYyBX9MH_2LAtpCiORoo_I8XRSHE2coAeTpAnon9AKgGVgT3-gF2K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explainable Fuzzy Deep Learning for Prediction of Epileptic Seizures Using EEG</title><source>IEEE Xplore</source><creator>Khan, Faiq Ahmad ; Umar, Zainab ; Jolfaei, Alireza ; Tariq, Muhammad</creator><creatorcontrib>Khan, Faiq Ahmad ; Umar, Zainab ; Jolfaei, Alireza ; Tariq, Muhammad</creatorcontrib><description>Addressing the challenge posed by the unpredictable and recurrent nature of epileptic seizures, which stand among the most significant neurological conditions, remains imperative, especially within settings inundated with high patient flow. The prompt identification of these seizures is paramount for effective patient care. Unfortunately, existing epilepsy seizure detection systems encounter limitations in availability and interpretability, thereby constraining their reliability and widespread application. Presently, neurophysiologists heavily rely on visually interpreting electroencephalogram (EEG) recordings displayed on screens to identify seizures. This article introduces an innovative method dedicated to detecting epileptic seizures within EEG signals, leveraging a specifically tailored fuzzy deep learning (FDL) architecture. The proposed methodology encompasses crucial stages of preprocessing and feature extraction, augmented by the utilization of explainable artificial intelligence models, such as local interpretable model-agnostic explanations (LIME) and Shapley additive explanation (SHAP) for enhancing model interpretability. The developed FDL model demonstrates promising results, achieving a noteworthy accuracy of 92.57%, precision of 0.96 for "normal" and 0.89 for "abnormal," recall of 0.91 for "normal" and 0.94 for "abnormal," and F1-score of 0.93 for "normal" and 0.91 for "abnormal," affirming its robustness in classification tasks. In addition, to validate the effectiveness of the proposed FDL, comparisons are performed with long-short term memory networks and 1-D convolutional neural network model models. The integration of LIME and SHAP significantly enhances the interpretability of the model, providing valuable insights into influential features. This comprehensive framework adeptly balances accuracy and interpretability, thereby making a substantial stride in advancing EEG-based diagnostic tools.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2024.3434709</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Brain modeling ; Classification ; Deep learning ; Electroencephalography ; Epilepsy ; epileptic seizure ; explainable artificial intelligence (XAI) ; Feature extraction ; fuzzy deep learning (FDL) ; Fuzzy systems</subject><ispartof>IEEE transactions on fuzzy systems, 2024-10, Vol.32 (10), p.5428-5437</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-4793748e8b0d3fd79104592341e33f243f5ab03b2ee3ceb0dcdf74b9e4aea4783</cites><orcidid>0000-0003-1296-2058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10613429$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10613429$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Faiq Ahmad</creatorcontrib><creatorcontrib>Umar, Zainab</creatorcontrib><creatorcontrib>Jolfaei, Alireza</creatorcontrib><creatorcontrib>Tariq, Muhammad</creatorcontrib><title>Explainable Fuzzy Deep Learning for Prediction of Epileptic Seizures Using EEG</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Addressing the challenge posed by the unpredictable and recurrent nature of epileptic seizures, which stand among the most significant neurological conditions, remains imperative, especially within settings inundated with high patient flow. The prompt identification of these seizures is paramount for effective patient care. Unfortunately, existing epilepsy seizure detection systems encounter limitations in availability and interpretability, thereby constraining their reliability and widespread application. Presently, neurophysiologists heavily rely on visually interpreting electroencephalogram (EEG) recordings displayed on screens to identify seizures. This article introduces an innovative method dedicated to detecting epileptic seizures within EEG signals, leveraging a specifically tailored fuzzy deep learning (FDL) architecture. The proposed methodology encompasses crucial stages of preprocessing and feature extraction, augmented by the utilization of explainable artificial intelligence models, such as local interpretable model-agnostic explanations (LIME) and Shapley additive explanation (SHAP) for enhancing model interpretability. The developed FDL model demonstrates promising results, achieving a noteworthy accuracy of 92.57%, precision of 0.96 for "normal" and 0.89 for "abnormal," recall of 0.91 for "normal" and 0.94 for "abnormal," and F1-score of 0.93 for "normal" and 0.91 for "abnormal," affirming its robustness in classification tasks. In addition, to validate the effectiveness of the proposed FDL, comparisons are performed with long-short term memory networks and 1-D convolutional neural network model models. The integration of LIME and SHAP significantly enhances the interpretability of the model, providing valuable insights into influential features. This comprehensive framework adeptly balances accuracy and interpretability, thereby making a substantial stride in advancing EEG-based diagnostic tools.</description><subject>Accuracy</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>epileptic seizure</subject><subject>explainable artificial intelligence (XAI)</subject><subject>Feature extraction</subject><subject>fuzzy deep learning (FDL)</subject><subject>Fuzzy systems</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLFOwzAURS0EEqXwA4jBP5Bi-73G8YhKWpAqQKJdukRO8oyMQhLZrUT79W1pB6Z7h3vucBi7l2IkpTCPi-lytRopoXAECKiFuWADaVAmQgBeHrpIIUm1SK_ZTYzfQkgcy2zA3vLfvrG-tWVDfLrZ7bb8majnc7Kh9e0Xd13gH4FqX6191_LO8bz3DfVrX_FP8rtNoMiX8TjN89ktu3K2iXR3ziFbTvPF5CWZv89eJ0_zpFLSrBPUBjRmlJWiBldrIwWOjQKUBOAUghvbUkCpiKCiw6iqncbSEFqyqDMYMnX6rUIXYyBX9MH_2LAtpCiORoo_I8XRSHE2coAeTpAnon9AKgGVgT3-gF2K</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Khan, Faiq Ahmad</creator><creator>Umar, Zainab</creator><creator>Jolfaei, Alireza</creator><creator>Tariq, Muhammad</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1296-2058</orcidid></search><sort><creationdate>20241001</creationdate><title>Explainable Fuzzy Deep Learning for Prediction of Epileptic Seizures Using EEG</title><author>Khan, Faiq Ahmad ; Umar, Zainab ; Jolfaei, Alireza ; Tariq, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-4793748e8b0d3fd79104592341e33f243f5ab03b2ee3ceb0dcdf74b9e4aea4783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>epileptic seizure</topic><topic>explainable artificial intelligence (XAI)</topic><topic>Feature extraction</topic><topic>fuzzy deep learning (FDL)</topic><topic>Fuzzy systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Faiq Ahmad</creatorcontrib><creatorcontrib>Umar, Zainab</creatorcontrib><creatorcontrib>Jolfaei, Alireza</creatorcontrib><creatorcontrib>Tariq, Muhammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Faiq Ahmad</au><au>Umar, Zainab</au><au>Jolfaei, Alireza</au><au>Tariq, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explainable Fuzzy Deep Learning for Prediction of Epileptic Seizures Using EEG</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>32</volume><issue>10</issue><spage>5428</spage><epage>5437</epage><pages>5428-5437</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Addressing the challenge posed by the unpredictable and recurrent nature of epileptic seizures, which stand among the most significant neurological conditions, remains imperative, especially within settings inundated with high patient flow. The prompt identification of these seizures is paramount for effective patient care. Unfortunately, existing epilepsy seizure detection systems encounter limitations in availability and interpretability, thereby constraining their reliability and widespread application. Presently, neurophysiologists heavily rely on visually interpreting electroencephalogram (EEG) recordings displayed on screens to identify seizures. This article introduces an innovative method dedicated to detecting epileptic seizures within EEG signals, leveraging a specifically tailored fuzzy deep learning (FDL) architecture. The proposed methodology encompasses crucial stages of preprocessing and feature extraction, augmented by the utilization of explainable artificial intelligence models, such as local interpretable model-agnostic explanations (LIME) and Shapley additive explanation (SHAP) for enhancing model interpretability. The developed FDL model demonstrates promising results, achieving a noteworthy accuracy of 92.57%, precision of 0.96 for "normal" and 0.89 for "abnormal," recall of 0.91 for "normal" and 0.94 for "abnormal," and F1-score of 0.93 for "normal" and 0.91 for "abnormal," affirming its robustness in classification tasks. In addition, to validate the effectiveness of the proposed FDL, comparisons are performed with long-short term memory networks and 1-D convolutional neural network model models. The integration of LIME and SHAP significantly enhances the interpretability of the model, providing valuable insights into influential features. This comprehensive framework adeptly balances accuracy and interpretability, thereby making a substantial stride in advancing EEG-based diagnostic tools.</abstract><pub>IEEE</pub><doi>10.1109/TFUZZ.2024.3434709</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1296-2058</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2024-10, Vol.32 (10), p.5428-5437
issn 1063-6706
1941-0034
language eng
recordid cdi_ieee_primary_10613429
source IEEE Xplore
subjects Accuracy
Brain modeling
Classification
Deep learning
Electroencephalography
Epilepsy
epileptic seizure
explainable artificial intelligence (XAI)
Feature extraction
fuzzy deep learning (FDL)
Fuzzy systems
title Explainable Fuzzy Deep Learning for Prediction of Epileptic Seizures Using EEG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explainable%20Fuzzy%20Deep%20Learning%20for%20Prediction%20of%20Epileptic%20Seizures%20Using%20EEG&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Khan,%20Faiq%20Ahmad&rft.date=2024-10-01&rft.volume=32&rft.issue=10&rft.spage=5428&rft.epage=5437&rft.pages=5428-5437&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2024.3434709&rft_dat=%3Ccrossref_RIE%3E10_1109_TFUZZ_2024_3434709%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10613429&rfr_iscdi=true