High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping
To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetri...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-09, Vol.24 (17), p.27309-27317 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27317 |
---|---|
container_issue | 17 |
container_start_page | 27309 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Yan, Zihao Zhang, Huishan Hu, Bing Yao, Xiaomeng He, Jianwei Zhang, Xinyi Zhu, Shengxin Li, Xianghui Hong, Weiqiang Hong, Qi Zhao, Yunong Xu, Yaohua Guo, Xiaohui |
description | To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetrical structure, significantly enhancing the sensor's performance. Through theoretical calculations, finite element modeling (FEM) simulation, and dynamic/static experimental measurements, the experimental outcomes indicate that the sensor possesses a linearity coefficient of 0.965 across the entire scale spectrum with a minimal hysteresis of merely 2.65%, coupled with a response time of 62 ms at a substantial pressure of 6.5 kPa. Furthermore, to streamline the manufacturing procedure, we chose to utilize cost-effective, straightforward, and efficient 3-D printing technology, fluidic molding method, and layer-by-layer (LBL) assembly technique, which significantly minimizes the expenditure without jeopardizing performance and extends the sensor's application spectrum in realms such as e-skin and wearable electronic gadgets. |
doi_str_mv | 10.1109/JSEN.2024.3431205 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10609780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10609780</ieee_id><sourcerecordid>10_1109_JSEN_2024_3431205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-89038ea2659a7d2611a2bdeaab28dc474c10a6d8cb539f75abff9f78b5755a473</originalsourceid><addsrcrecordid>eNpNkN1KwzAYhoMoOKcXIHiQG8hMmqRJD2XuTzYFN8GzkqTpFtmakrTirsGbtmU78Oj5eHnf7-AB4J7gESE4e3xZT15HCU7YiDJKEswvwIBwLhERTF72N8WIUfF5DW5i_MKYZIKLAfidu-0OLV1lVXDNEY5VrYxr3LeFFD3DqQ_Goune_ji9t3CjTOM6rm0VfYCLKtYu2ALqI1y1cRe8P8B1E1rTtMHCsqvM24Oq4Mo3zveoXOODq7ZQVQV897rLDZwFV9ddeAuuSrWP9u7MIfiYTjbjOVq-zRbjpyUyhMkGyQxTaVWS8kyJIkkJUYkurFI6kYVhghmCVVpIoznNSsGVLsuOUnPBuWKCDgE5_TXBxxhsmdfBHVQ45gTnvc28t5n3NvOzzW7zcNo4a-2_foozITH9A1UAc7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Zihao ; Zhang, Huishan ; Hu, Bing ; Yao, Xiaomeng ; He, Jianwei ; Zhang, Xinyi ; Zhu, Shengxin ; Li, Xianghui ; Hong, Weiqiang ; Hong, Qi ; Zhao, Yunong ; Xu, Yaohua ; Guo, Xiaohui</creator><creatorcontrib>Yan, Zihao ; Zhang, Huishan ; Hu, Bing ; Yao, Xiaomeng ; He, Jianwei ; Zhang, Xinyi ; Zhu, Shengxin ; Li, Xianghui ; Hong, Weiqiang ; Hong, Qi ; Zhao, Yunong ; Xu, Yaohua ; Guo, Xiaohui</creatorcontrib><description>To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetrical structure, significantly enhancing the sensor's performance. Through theoretical calculations, finite element modeling (FEM) simulation, and dynamic/static experimental measurements, the experimental outcomes indicate that the sensor possesses a linearity coefficient of 0.965 across the entire scale spectrum with a minimal hysteresis of merely 2.65%, coupled with a response time of 62 ms at a substantial pressure of 6.5 kPa. Furthermore, to streamline the manufacturing procedure, we chose to utilize cost-effective, straightforward, and efficient 3-D printing technology, fluidic molding method, and layer-by-layer (LBL) assembly technique, which significantly minimizes the expenditure without jeopardizing performance and extends the sensor's application spectrum in realms such as e-skin and wearable electronic gadgets.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3431205</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D force ; bionic mushroom ; Capacitance ; capacitive tactile sensor ; Electrodes ; Force ; high linearity ; Monitoring ; Sensor phenomena and characterization ; Sensors ; Tactile sensors</subject><ispartof>IEEE sensors journal, 2024-09, Vol.24 (17), p.27309-27317</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-89038ea2659a7d2611a2bdeaab28dc474c10a6d8cb539f75abff9f78b5755a473</cites><orcidid>0000-0002-0202-866X ; 0000-0003-0861-1802 ; 0000-0003-2439-8669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10609780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10609780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Zihao</creatorcontrib><creatorcontrib>Zhang, Huishan</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><creatorcontrib>Yao, Xiaomeng</creatorcontrib><creatorcontrib>He, Jianwei</creatorcontrib><creatorcontrib>Zhang, Xinyi</creatorcontrib><creatorcontrib>Zhu, Shengxin</creatorcontrib><creatorcontrib>Li, Xianghui</creatorcontrib><creatorcontrib>Hong, Weiqiang</creatorcontrib><creatorcontrib>Hong, Qi</creatorcontrib><creatorcontrib>Zhao, Yunong</creatorcontrib><creatorcontrib>Xu, Yaohua</creatorcontrib><creatorcontrib>Guo, Xiaohui</creatorcontrib><title>High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetrical structure, significantly enhancing the sensor's performance. Through theoretical calculations, finite element modeling (FEM) simulation, and dynamic/static experimental measurements, the experimental outcomes indicate that the sensor possesses a linearity coefficient of 0.965 across the entire scale spectrum with a minimal hysteresis of merely 2.65%, coupled with a response time of 62 ms at a substantial pressure of 6.5 kPa. Furthermore, to streamline the manufacturing procedure, we chose to utilize cost-effective, straightforward, and efficient 3-D printing technology, fluidic molding method, and layer-by-layer (LBL) assembly technique, which significantly minimizes the expenditure without jeopardizing performance and extends the sensor's application spectrum in realms such as e-skin and wearable electronic gadgets.</description><subject>3-D force</subject><subject>bionic mushroom</subject><subject>Capacitance</subject><subject>capacitive tactile sensor</subject><subject>Electrodes</subject><subject>Force</subject><subject>high linearity</subject><subject>Monitoring</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Tactile sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KwzAYhoMoOKcXIHiQG8hMmqRJD2XuTzYFN8GzkqTpFtmakrTirsGbtmU78Oj5eHnf7-AB4J7gESE4e3xZT15HCU7YiDJKEswvwIBwLhERTF72N8WIUfF5DW5i_MKYZIKLAfidu-0OLV1lVXDNEY5VrYxr3LeFFD3DqQ_Goune_ji9t3CjTOM6rm0VfYCLKtYu2ALqI1y1cRe8P8B1E1rTtMHCsqvM24Oq4Mo3zveoXOODq7ZQVQV897rLDZwFV9ddeAuuSrWP9u7MIfiYTjbjOVq-zRbjpyUyhMkGyQxTaVWS8kyJIkkJUYkurFI6kYVhghmCVVpIoznNSsGVLsuOUnPBuWKCDgE5_TXBxxhsmdfBHVQ45gTnvc28t5n3NvOzzW7zcNo4a-2_foozITH9A1UAc7I</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Yan, Zihao</creator><creator>Zhang, Huishan</creator><creator>Hu, Bing</creator><creator>Yao, Xiaomeng</creator><creator>He, Jianwei</creator><creator>Zhang, Xinyi</creator><creator>Zhu, Shengxin</creator><creator>Li, Xianghui</creator><creator>Hong, Weiqiang</creator><creator>Hong, Qi</creator><creator>Zhao, Yunong</creator><creator>Xu, Yaohua</creator><creator>Guo, Xiaohui</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0202-866X</orcidid><orcidid>https://orcid.org/0000-0003-0861-1802</orcidid><orcidid>https://orcid.org/0000-0003-2439-8669</orcidid></search><sort><creationdate>20240901</creationdate><title>High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping</title><author>Yan, Zihao ; Zhang, Huishan ; Hu, Bing ; Yao, Xiaomeng ; He, Jianwei ; Zhang, Xinyi ; Zhu, Shengxin ; Li, Xianghui ; Hong, Weiqiang ; Hong, Qi ; Zhao, Yunong ; Xu, Yaohua ; Guo, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-89038ea2659a7d2611a2bdeaab28dc474c10a6d8cb539f75abff9f78b5755a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D force</topic><topic>bionic mushroom</topic><topic>Capacitance</topic><topic>capacitive tactile sensor</topic><topic>Electrodes</topic><topic>Force</topic><topic>high linearity</topic><topic>Monitoring</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Tactile sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zihao</creatorcontrib><creatorcontrib>Zhang, Huishan</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><creatorcontrib>Yao, Xiaomeng</creatorcontrib><creatorcontrib>He, Jianwei</creatorcontrib><creatorcontrib>Zhang, Xinyi</creatorcontrib><creatorcontrib>Zhu, Shengxin</creatorcontrib><creatorcontrib>Li, Xianghui</creatorcontrib><creatorcontrib>Hong, Weiqiang</creatorcontrib><creatorcontrib>Hong, Qi</creatorcontrib><creatorcontrib>Zhao, Yunong</creatorcontrib><creatorcontrib>Xu, Yaohua</creatorcontrib><creatorcontrib>Guo, Xiaohui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Zihao</au><au>Zhang, Huishan</au><au>Hu, Bing</au><au>Yao, Xiaomeng</au><au>He, Jianwei</au><au>Zhang, Xinyi</au><au>Zhu, Shengxin</au><au>Li, Xianghui</au><au>Hong, Weiqiang</au><au>Hong, Qi</au><au>Zhao, Yunong</au><au>Xu, Yaohua</au><au>Guo, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>24</volume><issue>17</issue><spage>27309</spage><epage>27317</epage><pages>27309-27317</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetrical structure, significantly enhancing the sensor's performance. Through theoretical calculations, finite element modeling (FEM) simulation, and dynamic/static experimental measurements, the experimental outcomes indicate that the sensor possesses a linearity coefficient of 0.965 across the entire scale spectrum with a minimal hysteresis of merely 2.65%, coupled with a response time of 62 ms at a substantial pressure of 6.5 kPa. Furthermore, to streamline the manufacturing procedure, we chose to utilize cost-effective, straightforward, and efficient 3-D printing technology, fluidic molding method, and layer-by-layer (LBL) assembly technique, which significantly minimizes the expenditure without jeopardizing performance and extends the sensor's application spectrum in realms such as e-skin and wearable electronic gadgets.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3431205</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0202-866X</orcidid><orcidid>https://orcid.org/0000-0003-0861-1802</orcidid><orcidid>https://orcid.org/0000-0003-2439-8669</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-09, Vol.24 (17), p.27309-27317 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10609780 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D force bionic mushroom Capacitance capacitive tactile sensor Electrodes Force high linearity Monitoring Sensor phenomena and characterization Sensors Tactile sensors |
title | High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Linearity%20Capacitive%203-D%20Force-Flexible%20Tactile%20Sensor%20Inspired%20by%20Mushroom%20Structure%20for%20Human%20Motion%20Monitoring%20and%20Robotic%20Gripping&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yan,%20Zihao&rft.date=2024-09-01&rft.volume=24&rft.issue=17&rft.spage=27309&rft.epage=27317&rft.pages=27309-27317&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3431205&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3431205%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10609780&rfr_iscdi=true |