High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping

To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-09, Vol.24 (17), p.27309-27317
Hauptverfasser: Yan, Zihao, Zhang, Huishan, Hu, Bing, Yao, Xiaomeng, He, Jianwei, Zhang, Xinyi, Zhu, Shengxin, Li, Xianghui, Hong, Weiqiang, Hong, Qi, Zhao, Yunong, Xu, Yaohua, Guo, Xiaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27317
container_issue 17
container_start_page 27309
container_title IEEE sensors journal
container_volume 24
creator Yan, Zihao
Zhang, Huishan
Hu, Bing
Yao, Xiaomeng
He, Jianwei
Zhang, Xinyi
Zhu, Shengxin
Li, Xianghui
Hong, Weiqiang
Hong, Qi
Zhao, Yunong
Xu, Yaohua
Guo, Xiaohui
description To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetrical structure, significantly enhancing the sensor's performance. Through theoretical calculations, finite element modeling (FEM) simulation, and dynamic/static experimental measurements, the experimental outcomes indicate that the sensor possesses a linearity coefficient of 0.965 across the entire scale spectrum with a minimal hysteresis of merely 2.65%, coupled with a response time of 62 ms at a substantial pressure of 6.5 kPa. Furthermore, to streamline the manufacturing procedure, we chose to utilize cost-effective, straightforward, and efficient 3-D printing technology, fluidic molding method, and layer-by-layer (LBL) assembly technique, which significantly minimizes the expenditure without jeopardizing performance and extends the sensor's application spectrum in realms such as e-skin and wearable electronic gadgets.
doi_str_mv 10.1109/JSEN.2024.3431205
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10609780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10609780</ieee_id><sourcerecordid>10_1109_JSEN_2024_3431205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-89038ea2659a7d2611a2bdeaab28dc474c10a6d8cb539f75abff9f78b5755a473</originalsourceid><addsrcrecordid>eNpNkN1KwzAYhoMoOKcXIHiQG8hMmqRJD2XuTzYFN8GzkqTpFtmakrTirsGbtmU78Oj5eHnf7-AB4J7gESE4e3xZT15HCU7YiDJKEswvwIBwLhERTF72N8WIUfF5DW5i_MKYZIKLAfidu-0OLV1lVXDNEY5VrYxr3LeFFD3DqQ_Goune_ji9t3CjTOM6rm0VfYCLKtYu2ALqI1y1cRe8P8B1E1rTtMHCsqvM24Oq4Mo3zveoXOODq7ZQVQV897rLDZwFV9ddeAuuSrWP9u7MIfiYTjbjOVq-zRbjpyUyhMkGyQxTaVWS8kyJIkkJUYkurFI6kYVhghmCVVpIoznNSsGVLsuOUnPBuWKCDgE5_TXBxxhsmdfBHVQ45gTnvc28t5n3NvOzzW7zcNo4a-2_foozITH9A1UAc7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Zihao ; Zhang, Huishan ; Hu, Bing ; Yao, Xiaomeng ; He, Jianwei ; Zhang, Xinyi ; Zhu, Shengxin ; Li, Xianghui ; Hong, Weiqiang ; Hong, Qi ; Zhao, Yunong ; Xu, Yaohua ; Guo, Xiaohui</creator><creatorcontrib>Yan, Zihao ; Zhang, Huishan ; Hu, Bing ; Yao, Xiaomeng ; He, Jianwei ; Zhang, Xinyi ; Zhu, Shengxin ; Li, Xianghui ; Hong, Weiqiang ; Hong, Qi ; Zhao, Yunong ; Xu, Yaohua ; Guo, Xiaohui</creatorcontrib><description>To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetrical structure, significantly enhancing the sensor's performance. Through theoretical calculations, finite element modeling (FEM) simulation, and dynamic/static experimental measurements, the experimental outcomes indicate that the sensor possesses a linearity coefficient of 0.965 across the entire scale spectrum with a minimal hysteresis of merely 2.65%, coupled with a response time of 62 ms at a substantial pressure of 6.5 kPa. Furthermore, to streamline the manufacturing procedure, we chose to utilize cost-effective, straightforward, and efficient 3-D printing technology, fluidic molding method, and layer-by-layer (LBL) assembly technique, which significantly minimizes the expenditure without jeopardizing performance and extends the sensor's application spectrum in realms such as e-skin and wearable electronic gadgets.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3431205</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D force ; bionic mushroom ; Capacitance ; capacitive tactile sensor ; Electrodes ; Force ; high linearity ; Monitoring ; Sensor phenomena and characterization ; Sensors ; Tactile sensors</subject><ispartof>IEEE sensors journal, 2024-09, Vol.24 (17), p.27309-27317</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-89038ea2659a7d2611a2bdeaab28dc474c10a6d8cb539f75abff9f78b5755a473</cites><orcidid>0000-0002-0202-866X ; 0000-0003-0861-1802 ; 0000-0003-2439-8669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10609780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10609780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Zihao</creatorcontrib><creatorcontrib>Zhang, Huishan</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><creatorcontrib>Yao, Xiaomeng</creatorcontrib><creatorcontrib>He, Jianwei</creatorcontrib><creatorcontrib>Zhang, Xinyi</creatorcontrib><creatorcontrib>Zhu, Shengxin</creatorcontrib><creatorcontrib>Li, Xianghui</creatorcontrib><creatorcontrib>Hong, Weiqiang</creatorcontrib><creatorcontrib>Hong, Qi</creatorcontrib><creatorcontrib>Zhao, Yunong</creatorcontrib><creatorcontrib>Xu, Yaohua</creatorcontrib><creatorcontrib>Guo, Xiaohui</creatorcontrib><title>High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetrical structure, significantly enhancing the sensor's performance. Through theoretical calculations, finite element modeling (FEM) simulation, and dynamic/static experimental measurements, the experimental outcomes indicate that the sensor possesses a linearity coefficient of 0.965 across the entire scale spectrum with a minimal hysteresis of merely 2.65%, coupled with a response time of 62 ms at a substantial pressure of 6.5 kPa. Furthermore, to streamline the manufacturing procedure, we chose to utilize cost-effective, straightforward, and efficient 3-D printing technology, fluidic molding method, and layer-by-layer (LBL) assembly technique, which significantly minimizes the expenditure without jeopardizing performance and extends the sensor's application spectrum in realms such as e-skin and wearable electronic gadgets.</description><subject>3-D force</subject><subject>bionic mushroom</subject><subject>Capacitance</subject><subject>capacitive tactile sensor</subject><subject>Electrodes</subject><subject>Force</subject><subject>high linearity</subject><subject>Monitoring</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Tactile sensors</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1KwzAYhoMoOKcXIHiQG8hMmqRJD2XuTzYFN8GzkqTpFtmakrTirsGbtmU78Oj5eHnf7-AB4J7gESE4e3xZT15HCU7YiDJKEswvwIBwLhERTF72N8WIUfF5DW5i_MKYZIKLAfidu-0OLV1lVXDNEY5VrYxr3LeFFD3DqQ_Goune_ji9t3CjTOM6rm0VfYCLKtYu2ALqI1y1cRe8P8B1E1rTtMHCsqvM24Oq4Mo3zveoXOODq7ZQVQV897rLDZwFV9ddeAuuSrWP9u7MIfiYTjbjOVq-zRbjpyUyhMkGyQxTaVWS8kyJIkkJUYkurFI6kYVhghmCVVpIoznNSsGVLsuOUnPBuWKCDgE5_TXBxxhsmdfBHVQ45gTnvc28t5n3NvOzzW7zcNo4a-2_foozITH9A1UAc7I</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Yan, Zihao</creator><creator>Zhang, Huishan</creator><creator>Hu, Bing</creator><creator>Yao, Xiaomeng</creator><creator>He, Jianwei</creator><creator>Zhang, Xinyi</creator><creator>Zhu, Shengxin</creator><creator>Li, Xianghui</creator><creator>Hong, Weiqiang</creator><creator>Hong, Qi</creator><creator>Zhao, Yunong</creator><creator>Xu, Yaohua</creator><creator>Guo, Xiaohui</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0202-866X</orcidid><orcidid>https://orcid.org/0000-0003-0861-1802</orcidid><orcidid>https://orcid.org/0000-0003-2439-8669</orcidid></search><sort><creationdate>20240901</creationdate><title>High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping</title><author>Yan, Zihao ; Zhang, Huishan ; Hu, Bing ; Yao, Xiaomeng ; He, Jianwei ; Zhang, Xinyi ; Zhu, Shengxin ; Li, Xianghui ; Hong, Weiqiang ; Hong, Qi ; Zhao, Yunong ; Xu, Yaohua ; Guo, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-89038ea2659a7d2611a2bdeaab28dc474c10a6d8cb539f75abff9f78b5755a473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D force</topic><topic>bionic mushroom</topic><topic>Capacitance</topic><topic>capacitive tactile sensor</topic><topic>Electrodes</topic><topic>Force</topic><topic>high linearity</topic><topic>Monitoring</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Tactile sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Zihao</creatorcontrib><creatorcontrib>Zhang, Huishan</creatorcontrib><creatorcontrib>Hu, Bing</creatorcontrib><creatorcontrib>Yao, Xiaomeng</creatorcontrib><creatorcontrib>He, Jianwei</creatorcontrib><creatorcontrib>Zhang, Xinyi</creatorcontrib><creatorcontrib>Zhu, Shengxin</creatorcontrib><creatorcontrib>Li, Xianghui</creatorcontrib><creatorcontrib>Hong, Weiqiang</creatorcontrib><creatorcontrib>Hong, Qi</creatorcontrib><creatorcontrib>Zhao, Yunong</creatorcontrib><creatorcontrib>Xu, Yaohua</creatorcontrib><creatorcontrib>Guo, Xiaohui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Zihao</au><au>Zhang, Huishan</au><au>Hu, Bing</au><au>Yao, Xiaomeng</au><au>He, Jianwei</au><au>Zhang, Xinyi</au><au>Zhu, Shengxin</au><au>Li, Xianghui</au><au>Hong, Weiqiang</au><au>Hong, Qi</au><au>Zhao, Yunong</au><au>Xu, Yaohua</au><au>Guo, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>24</volume><issue>17</issue><spage>27309</spage><epage>27317</epage><pages>27309-27317</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>To improve the grasping perception capability of robotic hands, this article explores the design of a high-linear 3-D force-flexible tactile sensor inspired by mushroom structures. Different from traditional 3-D force tactile sensor structures, this sensor adopts a novel biomimetic mushroom symmetrical structure, significantly enhancing the sensor's performance. Through theoretical calculations, finite element modeling (FEM) simulation, and dynamic/static experimental measurements, the experimental outcomes indicate that the sensor possesses a linearity coefficient of 0.965 across the entire scale spectrum with a minimal hysteresis of merely 2.65%, coupled with a response time of 62 ms at a substantial pressure of 6.5 kPa. Furthermore, to streamline the manufacturing procedure, we chose to utilize cost-effective, straightforward, and efficient 3-D printing technology, fluidic molding method, and layer-by-layer (LBL) assembly technique, which significantly minimizes the expenditure without jeopardizing performance and extends the sensor's application spectrum in realms such as e-skin and wearable electronic gadgets.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3431205</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0202-866X</orcidid><orcidid>https://orcid.org/0000-0003-0861-1802</orcidid><orcidid>https://orcid.org/0000-0003-2439-8669</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-09, Vol.24 (17), p.27309-27317
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10609780
source IEEE Electronic Library (IEL)
subjects 3-D force
bionic mushroom
Capacitance
capacitive tactile sensor
Electrodes
Force
high linearity
Monitoring
Sensor phenomena and characterization
Sensors
Tactile sensors
title High-Linearity Capacitive 3-D Force-Flexible Tactile Sensor Inspired by Mushroom Structure for Human Motion Monitoring and Robotic Gripping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Linearity%20Capacitive%203-D%20Force-Flexible%20Tactile%20Sensor%20Inspired%20by%20Mushroom%20Structure%20for%20Human%20Motion%20Monitoring%20and%20Robotic%20Gripping&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yan,%20Zihao&rft.date=2024-09-01&rft.volume=24&rft.issue=17&rft.spage=27309&rft.epage=27317&rft.pages=27309-27317&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3431205&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3431205%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10609780&rfr_iscdi=true