Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations
Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric fie...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-10, Vol.23 (10), p.15380-15393 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15393 |
---|---|
container_issue | 10 |
container_start_page | 15380 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Jiang, Fenyu Li, Tong Lv, Xingzai Rui, Hua Jin, Depeng |
description | Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric field based on its mathematical relationship with the incident field by introducing the Volume Integration Equation into the loss function and scenario environmental information as input. Then, we let PEFNet learn in a supervised manner to compensate for residual error against measured data for refinement. We conduct extensive experiments on two publicly available path loss datasets, RadioMapSeer and RSRPSet, to exhibit the superiority of PEFNet over other state-of-the-art baselines. By comparing overall estimation performance, carrying out ablation study, testing estimation efficiency, and evaluating generalization ability, the results prove that PEFNet is an accurate and efficient method for estimating path loss. |
doi_str_mv | 10.1109/TWC.2024.3429196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10608081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10608081</ieee_id><sourcerecordid>3115572065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-349814b51c3ddeee7d935171b415cdcec3445e2fa6150aa12c32e216881b3ae03</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7x-SMfI6oKVKqgEkWMkeM4aUoat7YD6n-PQzswvdPp3bu7H0K3QCYAJHtYfU4nlFA-YZxmkMVnaARCpBGlPD0fahZHQJP4El05tyEEkliIEaqX64NrlIvmXWXsVpf4VfdWtkH8j7FfDoc2Xkq_xgvjHJ4532ylb0yHiwN-N-1309V41mrlrdnKutO-UXjeeV0PKbN9_2d21-iikq3TNycdo4-n2Wr6Ei3enufTx0WkIBE-YjxLgRcCFCtLrXVSZkxAAgUHoUqlFeNcaFrJGASREqhiVFOI0xQKJjVhY3R_zN1Zs--18_nG9LYLK3MGAUhCSSyCixxdyoanrK7ynQ1v2UMOJB9w5gFnPuDMTzjDyN1xpAln_bPHJCUpsF_HynHt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115572065</pqid></control><display><type>article</type><title>Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Fenyu ; Li, Tong ; Lv, Xingzai ; Rui, Hua ; Jin, Depeng</creator><creatorcontrib>Jiang, Fenyu ; Li, Tong ; Lv, Xingzai ; Rui, Hua ; Jin, Depeng</creatorcontrib><description>Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric field based on its mathematical relationship with the incident field by introducing the Volume Integration Equation into the loss function and scenario environmental information as input. Then, we let PEFNet learn in a supervised manner to compensate for residual error against measured data for refinement. We conduct extensive experiments on two publicly available path loss datasets, RadioMapSeer and RSRPSet, to exhibit the superiority of PEFNet over other state-of-the-art baselines. By comparing overall estimation performance, carrying out ablation study, testing estimation efficiency, and evaluating generalization ability, the results prove that PEFNet is an accurate and efficient method for estimating path loss.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3429196</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; channel modeling ; Computational modeling ; Design optimization ; Electric fields ; Error analysis ; Estimation ; Functions (mathematics) ; Integral equations ; knowledge and data-driven method ; Loss measurement ; Mathematical models ; Neural networks ; path loss estimation ; Performance evaluation ; State-of-the-art reviews ; Systems design ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.15380-15393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-349814b51c3ddeee7d935171b415cdcec3445e2fa6150aa12c32e216881b3ae03</cites><orcidid>0000-0001-7039-4736 ; 0000-0003-0419-5514 ; 0000-0001-9912-9709 ; 0000-0002-4343-703X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10608081$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10608081$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Fenyu</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Lv, Xingzai</creatorcontrib><creatorcontrib>Rui, Hua</creatorcontrib><creatorcontrib>Jin, Depeng</creatorcontrib><title>Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric field based on its mathematical relationship with the incident field by introducing the Volume Integration Equation into the loss function and scenario environmental information as input. Then, we let PEFNet learn in a supervised manner to compensate for residual error against measured data for refinement. We conduct extensive experiments on two publicly available path loss datasets, RadioMapSeer and RSRPSet, to exhibit the superiority of PEFNet over other state-of-the-art baselines. By comparing overall estimation performance, carrying out ablation study, testing estimation efficiency, and evaluating generalization ability, the results prove that PEFNet is an accurate and efficient method for estimating path loss.</description><subject>Ablation</subject><subject>channel modeling</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Electric fields</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Functions (mathematics)</subject><subject>Integral equations</subject><subject>knowledge and data-driven method</subject><subject>Loss measurement</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>path loss estimation</subject><subject>Performance evaluation</subject><subject>State-of-the-art reviews</subject><subject>Systems design</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7x-SMfI6oKVKqgEkWMkeM4aUoat7YD6n-PQzswvdPp3bu7H0K3QCYAJHtYfU4nlFA-YZxmkMVnaARCpBGlPD0fahZHQJP4El05tyEEkliIEaqX64NrlIvmXWXsVpf4VfdWtkH8j7FfDoc2Xkq_xgvjHJ4532ylb0yHiwN-N-1309V41mrlrdnKutO-UXjeeV0PKbN9_2d21-iikq3TNycdo4-n2Wr6Ei3enufTx0WkIBE-YjxLgRcCFCtLrXVSZkxAAgUHoUqlFeNcaFrJGASREqhiVFOI0xQKJjVhY3R_zN1Zs--18_nG9LYLK3MGAUhCSSyCixxdyoanrK7ynQ1v2UMOJB9w5gFnPuDMTzjDyN1xpAln_bPHJCUpsF_HynHt</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Jiang, Fenyu</creator><creator>Li, Tong</creator><creator>Lv, Xingzai</creator><creator>Rui, Hua</creator><creator>Jin, Depeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7039-4736</orcidid><orcidid>https://orcid.org/0000-0003-0419-5514</orcidid><orcidid>https://orcid.org/0000-0001-9912-9709</orcidid><orcidid>https://orcid.org/0000-0002-4343-703X</orcidid></search><sort><creationdate>202410</creationdate><title>Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations</title><author>Jiang, Fenyu ; Li, Tong ; Lv, Xingzai ; Rui, Hua ; Jin, Depeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-349814b51c3ddeee7d935171b415cdcec3445e2fa6150aa12c32e216881b3ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>channel modeling</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Electric fields</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Functions (mathematics)</topic><topic>Integral equations</topic><topic>knowledge and data-driven method</topic><topic>Loss measurement</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>path loss estimation</topic><topic>Performance evaluation</topic><topic>State-of-the-art reviews</topic><topic>Systems design</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Fenyu</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Lv, Xingzai</creatorcontrib><creatorcontrib>Rui, Hua</creatorcontrib><creatorcontrib>Jin, Depeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Fenyu</au><au>Li, Tong</au><au>Lv, Xingzai</au><au>Rui, Hua</au><au>Jin, Depeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-10</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><spage>15380</spage><epage>15393</epage><pages>15380-15393</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric field based on its mathematical relationship with the incident field by introducing the Volume Integration Equation into the loss function and scenario environmental information as input. Then, we let PEFNet learn in a supervised manner to compensate for residual error against measured data for refinement. We conduct extensive experiments on two publicly available path loss datasets, RadioMapSeer and RSRPSet, to exhibit the superiority of PEFNet over other state-of-the-art baselines. By comparing overall estimation performance, carrying out ablation study, testing estimation efficiency, and evaluating generalization ability, the results prove that PEFNet is an accurate and efficient method for estimating path loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3429196</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7039-4736</orcidid><orcidid>https://orcid.org/0000-0003-0419-5514</orcidid><orcidid>https://orcid.org/0000-0001-9912-9709</orcidid><orcidid>https://orcid.org/0000-0002-4343-703X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.15380-15393 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_10608081 |
source | IEEE Electronic Library (IEL) |
subjects | Ablation channel modeling Computational modeling Design optimization Electric fields Error analysis Estimation Functions (mathematics) Integral equations knowledge and data-driven method Loss measurement Mathematical models Neural networks path loss estimation Performance evaluation State-of-the-art reviews Systems design Wireless communication Wireless networks |
title | Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Informed%20Neural%20Networks%20for%20Path%20Loss%20Estimation%20by%20Solving%20Electromagnetic%20Integral%20Equations&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Jiang,%20Fenyu&rft.date=2024-10&rft.volume=23&rft.issue=10&rft.spage=15380&rft.epage=15393&rft.pages=15380-15393&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3429196&rft_dat=%3Cproquest_RIE%3E3115572065%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115572065&rft_id=info:pmid/&rft_ieee_id=10608081&rfr_iscdi=true |