Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations

Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-10, Vol.23 (10), p.15380-15393
Hauptverfasser: Jiang, Fenyu, Li, Tong, Lv, Xingzai, Rui, Hua, Jin, Depeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15393
container_issue 10
container_start_page 15380
container_title IEEE transactions on wireless communications
container_volume 23
creator Jiang, Fenyu
Li, Tong
Lv, Xingzai
Rui, Hua
Jin, Depeng
description Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric field based on its mathematical relationship with the incident field by introducing the Volume Integration Equation into the loss function and scenario environmental information as input. Then, we let PEFNet learn in a supervised manner to compensate for residual error against measured data for refinement. We conduct extensive experiments on two publicly available path loss datasets, RadioMapSeer and RSRPSet, to exhibit the superiority of PEFNet over other state-of-the-art baselines. By comparing overall estimation performance, carrying out ablation study, testing estimation efficiency, and evaluating generalization ability, the results prove that PEFNet is an accurate and efficient method for estimating path loss.
doi_str_mv 10.1109/TWC.2024.3429196
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10608081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10608081</ieee_id><sourcerecordid>3115572065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-349814b51c3ddeee7d935171b415cdcec3445e2fa6150aa12c32e216881b3ae03</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7x-SMfI6oKVKqgEkWMkeM4aUoat7YD6n-PQzswvdPp3bu7H0K3QCYAJHtYfU4nlFA-YZxmkMVnaARCpBGlPD0fahZHQJP4El05tyEEkliIEaqX64NrlIvmXWXsVpf4VfdWtkH8j7FfDoc2Xkq_xgvjHJ4532ylb0yHiwN-N-1309V41mrlrdnKutO-UXjeeV0PKbN9_2d21-iikq3TNycdo4-n2Wr6Ei3enufTx0WkIBE-YjxLgRcCFCtLrXVSZkxAAgUHoUqlFeNcaFrJGASREqhiVFOI0xQKJjVhY3R_zN1Zs--18_nG9LYLK3MGAUhCSSyCixxdyoanrK7ynQ1v2UMOJB9w5gFnPuDMTzjDyN1xpAln_bPHJCUpsF_HynHt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115572065</pqid></control><display><type>article</type><title>Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Fenyu ; Li, Tong ; Lv, Xingzai ; Rui, Hua ; Jin, Depeng</creator><creatorcontrib>Jiang, Fenyu ; Li, Tong ; Lv, Xingzai ; Rui, Hua ; Jin, Depeng</creatorcontrib><description>Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric field based on its mathematical relationship with the incident field by introducing the Volume Integration Equation into the loss function and scenario environmental information as input. Then, we let PEFNet learn in a supervised manner to compensate for residual error against measured data for refinement. We conduct extensive experiments on two publicly available path loss datasets, RadioMapSeer and RSRPSet, to exhibit the superiority of PEFNet over other state-of-the-art baselines. By comparing overall estimation performance, carrying out ablation study, testing estimation efficiency, and evaluating generalization ability, the results prove that PEFNet is an accurate and efficient method for estimating path loss.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3429196</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; channel modeling ; Computational modeling ; Design optimization ; Electric fields ; Error analysis ; Estimation ; Functions (mathematics) ; Integral equations ; knowledge and data-driven method ; Loss measurement ; Mathematical models ; Neural networks ; path loss estimation ; Performance evaluation ; State-of-the-art reviews ; Systems design ; Wireless communication ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.15380-15393</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-349814b51c3ddeee7d935171b415cdcec3445e2fa6150aa12c32e216881b3ae03</cites><orcidid>0000-0001-7039-4736 ; 0000-0003-0419-5514 ; 0000-0001-9912-9709 ; 0000-0002-4343-703X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10608081$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10608081$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiang, Fenyu</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Lv, Xingzai</creatorcontrib><creatorcontrib>Rui, Hua</creatorcontrib><creatorcontrib>Jin, Depeng</creatorcontrib><title>Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric field based on its mathematical relationship with the incident field by introducing the Volume Integration Equation into the loss function and scenario environmental information as input. Then, we let PEFNet learn in a supervised manner to compensate for residual error against measured data for refinement. We conduct extensive experiments on two publicly available path loss datasets, RadioMapSeer and RSRPSet, to exhibit the superiority of PEFNet over other state-of-the-art baselines. By comparing overall estimation performance, carrying out ablation study, testing estimation efficiency, and evaluating generalization ability, the results prove that PEFNet is an accurate and efficient method for estimating path loss.</description><subject>Ablation</subject><subject>channel modeling</subject><subject>Computational modeling</subject><subject>Design optimization</subject><subject>Electric fields</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Functions (mathematics)</subject><subject>Integral equations</subject><subject>knowledge and data-driven method</subject><subject>Loss measurement</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>path loss estimation</subject><subject>Performance evaluation</subject><subject>State-of-the-art reviews</subject><subject>Systems design</subject><subject>Wireless communication</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7x-SMfI6oKVKqgEkWMkeM4aUoat7YD6n-PQzswvdPp3bu7H0K3QCYAJHtYfU4nlFA-YZxmkMVnaARCpBGlPD0fahZHQJP4El05tyEEkliIEaqX64NrlIvmXWXsVpf4VfdWtkH8j7FfDoc2Xkq_xgvjHJ4532ylb0yHiwN-N-1309V41mrlrdnKutO-UXjeeV0PKbN9_2d21-iikq3TNycdo4-n2Wr6Ei3enufTx0WkIBE-YjxLgRcCFCtLrXVSZkxAAgUHoUqlFeNcaFrJGASREqhiVFOI0xQKJjVhY3R_zN1Zs--18_nG9LYLK3MGAUhCSSyCixxdyoanrK7ynQ1v2UMOJB9w5gFnPuDMTzjDyN1xpAln_bPHJCUpsF_HynHt</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Jiang, Fenyu</creator><creator>Li, Tong</creator><creator>Lv, Xingzai</creator><creator>Rui, Hua</creator><creator>Jin, Depeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7039-4736</orcidid><orcidid>https://orcid.org/0000-0003-0419-5514</orcidid><orcidid>https://orcid.org/0000-0001-9912-9709</orcidid><orcidid>https://orcid.org/0000-0002-4343-703X</orcidid></search><sort><creationdate>202410</creationdate><title>Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations</title><author>Jiang, Fenyu ; Li, Tong ; Lv, Xingzai ; Rui, Hua ; Jin, Depeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-349814b51c3ddeee7d935171b415cdcec3445e2fa6150aa12c32e216881b3ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>channel modeling</topic><topic>Computational modeling</topic><topic>Design optimization</topic><topic>Electric fields</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Functions (mathematics)</topic><topic>Integral equations</topic><topic>knowledge and data-driven method</topic><topic>Loss measurement</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>path loss estimation</topic><topic>Performance evaluation</topic><topic>State-of-the-art reviews</topic><topic>Systems design</topic><topic>Wireless communication</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Fenyu</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Lv, Xingzai</creatorcontrib><creatorcontrib>Rui, Hua</creatorcontrib><creatorcontrib>Jin, Depeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Fenyu</au><au>Li, Tong</au><au>Lv, Xingzai</au><au>Rui, Hua</au><au>Jin, Depeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-10</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><spage>15380</spage><epage>15393</epage><pages>15380-15393</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Accurately and efficiently modeling wireless channels, especially estimating path loss value, is crucial to wireless system design and performance optimization. This paper proposes a knowledge and data jointly driven path loss estimation method named PEFNet. PEFNet can predict the total electric field based on its mathematical relationship with the incident field by introducing the Volume Integration Equation into the loss function and scenario environmental information as input. Then, we let PEFNet learn in a supervised manner to compensate for residual error against measured data for refinement. We conduct extensive experiments on two publicly available path loss datasets, RadioMapSeer and RSRPSet, to exhibit the superiority of PEFNet over other state-of-the-art baselines. By comparing overall estimation performance, carrying out ablation study, testing estimation efficiency, and evaluating generalization ability, the results prove that PEFNet is an accurate and efficient method for estimating path loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3429196</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7039-4736</orcidid><orcidid>https://orcid.org/0000-0003-0419-5514</orcidid><orcidid>https://orcid.org/0000-0001-9912-9709</orcidid><orcidid>https://orcid.org/0000-0002-4343-703X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.15380-15393
issn 1536-1276
1558-2248
language eng
recordid cdi_ieee_primary_10608081
source IEEE Electronic Library (IEL)
subjects Ablation
channel modeling
Computational modeling
Design optimization
Electric fields
Error analysis
Estimation
Functions (mathematics)
Integral equations
knowledge and data-driven method
Loss measurement
Mathematical models
Neural networks
path loss estimation
Performance evaluation
State-of-the-art reviews
Systems design
Wireless communication
Wireless networks
title Physics-Informed Neural Networks for Path Loss Estimation by Solving Electromagnetic Integral Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Informed%20Neural%20Networks%20for%20Path%20Loss%20Estimation%20by%20Solving%20Electromagnetic%20Integral%20Equations&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Jiang,%20Fenyu&rft.date=2024-10&rft.volume=23&rft.issue=10&rft.spage=15380&rft.epage=15393&rft.pages=15380-15393&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3429196&rft_dat=%3Cproquest_RIE%3E3115572065%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115572065&rft_id=info:pmid/&rft_ieee_id=10608081&rfr_iscdi=true