Progressive Semantic-Guided Network for the Extraction of Raft Aquaculture Areas From Remote Sensing Images

Accurate monitoring of raft aquaculture areas is particularly important for raft aquaculture planning and management. However, due to natural and human factors such as tidal changes and crop harvesting, the spectral response in some aquaculture areas is weak, leading to omissions and incompleteness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2024, Vol.21, p.1-5
Hauptverfasser: Lu, Yan, Guo, Baotao, Li, Haojie, Cui, Binge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 21
creator Lu, Yan
Guo, Baotao
Li, Haojie
Cui, Binge
description Accurate monitoring of raft aquaculture areas is particularly important for raft aquaculture planning and management. However, due to natural and human factors such as tidal changes and crop harvesting, the spectral response in some aquaculture areas is weak, leading to omissions and incompleteness in extraction results. To address this problem, we propose a progressive semantic-guided network (PSGNet) for accurate extraction of raft aquaculture areas from remote sensing images. Specifically, inspired by the human visual system, we introduce a feature enrichment module (FEM) with parallel dilated convolution to capture more discriminative features of aquaculture areas, and then a partial decoder is used to aggregate high-level features and generate an initial semantic map. In addition, we propose a semantic-guided module (SGM) that progressively suppresses background information and enhances feature response in aquaculture areas through dual-branch semantic guidance. The experimental results on the GF-1 aquaculture area dataset have shown that the proposed PSGNet performs better than other models in extracting raft aquaculture areas and significantly reduces the omissions and incompleteness of extracted aquaculture areas, with the F1-score reaching 0.91, which is 2% higher than SOTA models. Furthermore, the experimental results on the Sentinel-2, GF-2 and Dongtou datasets verify the generalization ability of PSGNet.
doi_str_mv 10.1109/LGRS.2024.3432794
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10606526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606526</ieee_id><sourcerecordid>10_1109_LGRS_2024_3432794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-f1581d7d3b78ad8f07d38777e480605dad48bb8a0b71d6b4b66f3893775df4d3</originalsourceid><addsrcrecordid>eNpNkLtOwzAYhS0EEqXwAEgMfoEUO7ZjZ6yq3qQKUNuBLXLi3yW0icF2uLw9jdqB6ZzhfGf4ELqnZEQpyR9X8_VmlJKUjxhnqcz5BRpQIVRChKSXfeciEbl6vUY3IbyT41IpOUD7F-92HkKovwBvoNFtrKtk3tUGDH6C-O38HlvncXwDPP2JXlexdi12Fq-1jXj82emqO8TOAx570AHPvGvwGhoX-8M21O0OLxu9g3CLrqw-BLg75xBtZ9PtZJGsnufLyXiVVJSrmFgqFDXSsFIqbZQlx6qklMAVyYgw2nBVlkqTUlKTlbzMMstUzqQUxnLDhoiebivvQvBgiw9fN9r_FpQUvayil1X0soqzrCPzcGJqAPi3z0gm0oz9AZItZ6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Progressive Semantic-Guided Network for the Extraction of Raft Aquaculture Areas From Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Yan ; Guo, Baotao ; Li, Haojie ; Cui, Binge</creator><creatorcontrib>Lu, Yan ; Guo, Baotao ; Li, Haojie ; Cui, Binge</creatorcontrib><description>Accurate monitoring of raft aquaculture areas is particularly important for raft aquaculture planning and management. However, due to natural and human factors such as tidal changes and crop harvesting, the spectral response in some aquaculture areas is weak, leading to omissions and incompleteness in extraction results. To address this problem, we propose a progressive semantic-guided network (PSGNet) for accurate extraction of raft aquaculture areas from remote sensing images. Specifically, inspired by the human visual system, we introduce a feature enrichment module (FEM) with parallel dilated convolution to capture more discriminative features of aquaculture areas, and then a partial decoder is used to aggregate high-level features and generate an initial semantic map. In addition, we propose a semantic-guided module (SGM) that progressively suppresses background information and enhances feature response in aquaculture areas through dual-branch semantic guidance. The experimental results on the GF-1 aquaculture area dataset have shown that the proposed PSGNet performs better than other models in extracting raft aquaculture areas and significantly reduces the omissions and incompleteness of extracted aquaculture areas, with the F1-score reaching 0.91, which is 2% higher than SOTA models. Furthermore, the experimental results on the Sentinel-2, GF-2 and Dongtou datasets verify the generalization ability of PSGNet.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3432794</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aquaculture ; Convolution ; Data mining ; Feature enrichment ; Feature extraction ; Finite element analysis ; raft aquaculture areas ; Remote sensing ; remote sensing images ; semantic-guided ; Semantics</subject><ispartof>IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-f1581d7d3b78ad8f07d38777e480605dad48bb8a0b71d6b4b66f3893775df4d3</cites><orcidid>0009-0009-8477-388X ; 0000-0003-3882-2205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10606526$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Guo, Baotao</creatorcontrib><creatorcontrib>Li, Haojie</creatorcontrib><creatorcontrib>Cui, Binge</creatorcontrib><title>Progressive Semantic-Guided Network for the Extraction of Raft Aquaculture Areas From Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Accurate monitoring of raft aquaculture areas is particularly important for raft aquaculture planning and management. However, due to natural and human factors such as tidal changes and crop harvesting, the spectral response in some aquaculture areas is weak, leading to omissions and incompleteness in extraction results. To address this problem, we propose a progressive semantic-guided network (PSGNet) for accurate extraction of raft aquaculture areas from remote sensing images. Specifically, inspired by the human visual system, we introduce a feature enrichment module (FEM) with parallel dilated convolution to capture more discriminative features of aquaculture areas, and then a partial decoder is used to aggregate high-level features and generate an initial semantic map. In addition, we propose a semantic-guided module (SGM) that progressively suppresses background information and enhances feature response in aquaculture areas through dual-branch semantic guidance. The experimental results on the GF-1 aquaculture area dataset have shown that the proposed PSGNet performs better than other models in extracting raft aquaculture areas and significantly reduces the omissions and incompleteness of extracted aquaculture areas, with the F1-score reaching 0.91, which is 2% higher than SOTA models. Furthermore, the experimental results on the Sentinel-2, GF-2 and Dongtou datasets verify the generalization ability of PSGNet.</description><subject>Aquaculture</subject><subject>Convolution</subject><subject>Data mining</subject><subject>Feature enrichment</subject><subject>Feature extraction</subject><subject>Finite element analysis</subject><subject>raft aquaculture areas</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>semantic-guided</subject><subject>Semantics</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtOwzAYhS0EEqXwAEgMfoEUO7ZjZ6yq3qQKUNuBLXLi3yW0icF2uLw9jdqB6ZzhfGf4ELqnZEQpyR9X8_VmlJKUjxhnqcz5BRpQIVRChKSXfeciEbl6vUY3IbyT41IpOUD7F-92HkKovwBvoNFtrKtk3tUGDH6C-O38HlvncXwDPP2JXlexdi12Fq-1jXj82emqO8TOAx570AHPvGvwGhoX-8M21O0OLxu9g3CLrqw-BLg75xBtZ9PtZJGsnufLyXiVVJSrmFgqFDXSsFIqbZQlx6qklMAVyYgw2nBVlkqTUlKTlbzMMstUzqQUxnLDhoiebivvQvBgiw9fN9r_FpQUvayil1X0soqzrCPzcGJqAPi3z0gm0oz9AZItZ6w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lu, Yan</creator><creator>Guo, Baotao</creator><creator>Li, Haojie</creator><creator>Cui, Binge</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-8477-388X</orcidid><orcidid>https://orcid.org/0000-0003-3882-2205</orcidid></search><sort><creationdate>2024</creationdate><title>Progressive Semantic-Guided Network for the Extraction of Raft Aquaculture Areas From Remote Sensing Images</title><author>Lu, Yan ; Guo, Baotao ; Li, Haojie ; Cui, Binge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-f1581d7d3b78ad8f07d38777e480605dad48bb8a0b71d6b4b66f3893775df4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquaculture</topic><topic>Convolution</topic><topic>Data mining</topic><topic>Feature enrichment</topic><topic>Feature extraction</topic><topic>Finite element analysis</topic><topic>raft aquaculture areas</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>semantic-guided</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yan</creatorcontrib><creatorcontrib>Guo, Baotao</creatorcontrib><creatorcontrib>Li, Haojie</creatorcontrib><creatorcontrib>Cui, Binge</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Yan</au><au>Guo, Baotao</au><au>Li, Haojie</au><au>Cui, Binge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progressive Semantic-Guided Network for the Extraction of Raft Aquaculture Areas From Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Accurate monitoring of raft aquaculture areas is particularly important for raft aquaculture planning and management. However, due to natural and human factors such as tidal changes and crop harvesting, the spectral response in some aquaculture areas is weak, leading to omissions and incompleteness in extraction results. To address this problem, we propose a progressive semantic-guided network (PSGNet) for accurate extraction of raft aquaculture areas from remote sensing images. Specifically, inspired by the human visual system, we introduce a feature enrichment module (FEM) with parallel dilated convolution to capture more discriminative features of aquaculture areas, and then a partial decoder is used to aggregate high-level features and generate an initial semantic map. In addition, we propose a semantic-guided module (SGM) that progressively suppresses background information and enhances feature response in aquaculture areas through dual-branch semantic guidance. The experimental results on the GF-1 aquaculture area dataset have shown that the proposed PSGNet performs better than other models in extracting raft aquaculture areas and significantly reduces the omissions and incompleteness of extracted aquaculture areas, with the F1-score reaching 0.91, which is 2% higher than SOTA models. Furthermore, the experimental results on the Sentinel-2, GF-2 and Dongtou datasets verify the generalization ability of PSGNet.</abstract><pub>IEEE</pub><doi>10.1109/LGRS.2024.3432794</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0009-8477-388X</orcidid><orcidid>https://orcid.org/0000-0003-3882-2205</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2024, Vol.21, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_10606526
source IEEE Electronic Library (IEL)
subjects Aquaculture
Convolution
Data mining
Feature enrichment
Feature extraction
Finite element analysis
raft aquaculture areas
Remote sensing
remote sensing images
semantic-guided
Semantics
title Progressive Semantic-Guided Network for the Extraction of Raft Aquaculture Areas From Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progressive%20Semantic-Guided%20Network%20for%20the%20Extraction%20of%20Raft%20Aquaculture%20Areas%20From%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Lu,%20Yan&rft.date=2024&rft.volume=21&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3432794&rft_dat=%3Ccrossref_RIE%3E10_1109_LGRS_2024_3432794%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10606526&rfr_iscdi=true