Learning Cruxes to Push for Object Detection in Low-Quality Images

Highly degraded images greatly challenge existing algorithms to detect objects of interest in adverse scenarios, such as rain, fog, and underwater. Recently, researchers develop sophisticated deep architectures in order to enhance image quality. Unfortunately, the visually appealing output of the en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2024-12, Vol.34 (12), p.12233-12243
Hauptverfasser: Fu, Chenping, Xiao, Jiewen, Yuan, Wanqi, Liu, Risheng, Fan, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12243
container_issue 12
container_start_page 12233
container_title IEEE transactions on circuits and systems for video technology
container_volume 34
creator Fu, Chenping
Xiao, Jiewen
Yuan, Wanqi
Liu, Risheng
Fan, Xin
description Highly degraded images greatly challenge existing algorithms to detect objects of interest in adverse scenarios, such as rain, fog, and underwater. Recently, researchers develop sophisticated deep architectures in order to enhance image quality. Unfortunately, the visually appealing output of the enhancement module does not necessarily generate high accuracy for deep detectors. Another feasible solution for low-quality image detection is to transform it into a domain adaptation problem. Typically, these approaches invoke complicated training strategies such as adversarial learning and graph matching. False detection is likely to occur in local regions of a low-quality image. In this paper, we propose a simple yet effective strategy with two learners for low-quality image detection. We devise the crux learner to generate cruxes that have great impacts on detection performance. The catch-up leaner with a simple residual transfer mechanism maps the feature distributions of crux regions to those favouring a deep detector. These two learners can be plugged into any CNN-based feature extraction networks, e.g., ResNetXT101 and ResNet50, and yield high detection accuracy on various degraded scenarios. Extensive experiments on several public datasets demonstrate that our method achieves more promising results than state-of-the-art detection approaches. The codes: https://github.com/xiaoDetection/learning-cruxes-to-push .
doi_str_mv 10.1109/TCSVT.2024.3432580
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10606519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10606519</ieee_id><sourcerecordid>3147528791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-ba8cdc80ab32cb89c443be02d772fc3e29f692866df30ceb47a552ef59b78dad3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYpfsbOEsKrUqSCKGwt25mUVG1S7ETQvyelXbC6s7jnjnQQuqRkQinJbub528d8wggTEy44k5ocoRGVUieMEXk83ETSRDMqT9FZjEtCqNBCjdBdATY0dbPAeeh_IOKuxS99_MRVG_DMLcF3-B66Ieq2wXWDi_Y7ee3tqu62eLq2C4jn6KSyqwgXhxyj98eHef6cFLOnaX5bJJ4J1SXOal96TazjzDudeSG4A8JKpVjlObCsSjOm07SsOPHghLJSMqhk5pQubcnH6Hq_uwntVw-xM8u2D83w0nAqlGRaZXRosX3LhzbGAJXZhHptw9ZQYnauzJ8rs3NlDq4G6GoP1QDwD0hJKmnGfwGUKmVj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147528791</pqid></control><display><type>article</type><title>Learning Cruxes to Push for Object Detection in Low-Quality Images</title><source>IEEE Electronic Library (IEL)</source><creator>Fu, Chenping ; Xiao, Jiewen ; Yuan, Wanqi ; Liu, Risheng ; Fan, Xin</creator><creatorcontrib>Fu, Chenping ; Xiao, Jiewen ; Yuan, Wanqi ; Liu, Risheng ; Fan, Xin</creatorcontrib><description>Highly degraded images greatly challenge existing algorithms to detect objects of interest in adverse scenarios, such as rain, fog, and underwater. Recently, researchers develop sophisticated deep architectures in order to enhance image quality. Unfortunately, the visually appealing output of the enhancement module does not necessarily generate high accuracy for deep detectors. Another feasible solution for low-quality image detection is to transform it into a domain adaptation problem. Typically, these approaches invoke complicated training strategies such as adversarial learning and graph matching. False detection is likely to occur in local regions of a low-quality image. In this paper, we propose a simple yet effective strategy with two learners for low-quality image detection. We devise the crux learner to generate cruxes that have great impacts on detection performance. The catch-up leaner with a simple residual transfer mechanism maps the feature distributions of crux regions to those favouring a deep detector. These two learners can be plugged into any CNN-based feature extraction networks, e.g., ResNetXT101 and ResNet50, and yield high detection accuracy on various degraded scenarios. Extensive experiments on several public datasets demonstrate that our method achieves more promising results than state-of-the-art detection approaches. The codes: https://github.com/xiaoDetection/learning-cruxes-to-push .</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2024.3432580</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Degradation ; Detection algorithms ; Feature extraction ; Graph matching ; Image analysis ; Image detection ; Image enhancement ; Image quality ; low-quality scenes ; Machine learning ; Object detection ; Object recognition ; Training</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2024-12, Vol.34 (12), p.12233-12243</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-ba8cdc80ab32cb89c443be02d772fc3e29f692866df30ceb47a552ef59b78dad3</cites><orcidid>0000-0002-8991-4188 ; 0000-0002-9554-0565 ; 0000-0003-2813-8434 ; 0009-0006-7001-9913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10606519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10606519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Chenping</creatorcontrib><creatorcontrib>Xiao, Jiewen</creatorcontrib><creatorcontrib>Yuan, Wanqi</creatorcontrib><creatorcontrib>Liu, Risheng</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><title>Learning Cruxes to Push for Object Detection in Low-Quality Images</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Highly degraded images greatly challenge existing algorithms to detect objects of interest in adverse scenarios, such as rain, fog, and underwater. Recently, researchers develop sophisticated deep architectures in order to enhance image quality. Unfortunately, the visually appealing output of the enhancement module does not necessarily generate high accuracy for deep detectors. Another feasible solution for low-quality image detection is to transform it into a domain adaptation problem. Typically, these approaches invoke complicated training strategies such as adversarial learning and graph matching. False detection is likely to occur in local regions of a low-quality image. In this paper, we propose a simple yet effective strategy with two learners for low-quality image detection. We devise the crux learner to generate cruxes that have great impacts on detection performance. The catch-up leaner with a simple residual transfer mechanism maps the feature distributions of crux regions to those favouring a deep detector. These two learners can be plugged into any CNN-based feature extraction networks, e.g., ResNetXT101 and ResNet50, and yield high detection accuracy on various degraded scenarios. Extensive experiments on several public datasets demonstrate that our method achieves more promising results than state-of-the-art detection approaches. The codes: https://github.com/xiaoDetection/learning-cruxes-to-push .</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Degradation</subject><subject>Detection algorithms</subject><subject>Feature extraction</subject><subject>Graph matching</subject><subject>Image analysis</subject><subject>Image detection</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>low-quality scenes</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Training</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwA4iFJdYpfsbOEsKrUqSCKGwt25mUVG1S7ETQvyelXbC6s7jnjnQQuqRkQinJbub528d8wggTEy44k5ocoRGVUieMEXk83ETSRDMqT9FZjEtCqNBCjdBdATY0dbPAeeh_IOKuxS99_MRVG_DMLcF3-B66Ieq2wXWDi_Y7ee3tqu62eLq2C4jn6KSyqwgXhxyj98eHef6cFLOnaX5bJJ4J1SXOal96TazjzDudeSG4A8JKpVjlObCsSjOm07SsOPHghLJSMqhk5pQubcnH6Hq_uwntVw-xM8u2D83w0nAqlGRaZXRosX3LhzbGAJXZhHptw9ZQYnauzJ8rs3NlDq4G6GoP1QDwD0hJKmnGfwGUKmVj</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Fu, Chenping</creator><creator>Xiao, Jiewen</creator><creator>Yuan, Wanqi</creator><creator>Liu, Risheng</creator><creator>Fan, Xin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8991-4188</orcidid><orcidid>https://orcid.org/0000-0002-9554-0565</orcidid><orcidid>https://orcid.org/0000-0003-2813-8434</orcidid><orcidid>https://orcid.org/0009-0006-7001-9913</orcidid></search><sort><creationdate>20241201</creationdate><title>Learning Cruxes to Push for Object Detection in Low-Quality Images</title><author>Fu, Chenping ; Xiao, Jiewen ; Yuan, Wanqi ; Liu, Risheng ; Fan, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-ba8cdc80ab32cb89c443be02d772fc3e29f692866df30ceb47a552ef59b78dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Degradation</topic><topic>Detection algorithms</topic><topic>Feature extraction</topic><topic>Graph matching</topic><topic>Image analysis</topic><topic>Image detection</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>low-quality scenes</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Chenping</creatorcontrib><creatorcontrib>Xiao, Jiewen</creatorcontrib><creatorcontrib>Yuan, Wanqi</creatorcontrib><creatorcontrib>Liu, Risheng</creatorcontrib><creatorcontrib>Fan, Xin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Chenping</au><au>Xiao, Jiewen</au><au>Yuan, Wanqi</au><au>Liu, Risheng</au><au>Fan, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Cruxes to Push for Object Detection in Low-Quality Images</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>34</volume><issue>12</issue><spage>12233</spage><epage>12243</epage><pages>12233-12243</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Highly degraded images greatly challenge existing algorithms to detect objects of interest in adverse scenarios, such as rain, fog, and underwater. Recently, researchers develop sophisticated deep architectures in order to enhance image quality. Unfortunately, the visually appealing output of the enhancement module does not necessarily generate high accuracy for deep detectors. Another feasible solution for low-quality image detection is to transform it into a domain adaptation problem. Typically, these approaches invoke complicated training strategies such as adversarial learning and graph matching. False detection is likely to occur in local regions of a low-quality image. In this paper, we propose a simple yet effective strategy with two learners for low-quality image detection. We devise the crux learner to generate cruxes that have great impacts on detection performance. The catch-up leaner with a simple residual transfer mechanism maps the feature distributions of crux regions to those favouring a deep detector. These two learners can be plugged into any CNN-based feature extraction networks, e.g., ResNetXT101 and ResNet50, and yield high detection accuracy on various degraded scenarios. Extensive experiments on several public datasets demonstrate that our method achieves more promising results than state-of-the-art detection approaches. The codes: https://github.com/xiaoDetection/learning-cruxes-to-push .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2024.3432580</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8991-4188</orcidid><orcidid>https://orcid.org/0000-0002-9554-0565</orcidid><orcidid>https://orcid.org/0000-0003-2813-8434</orcidid><orcidid>https://orcid.org/0009-0006-7001-9913</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2024-12, Vol.34 (12), p.12233-12243
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_10606519
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Degradation
Detection algorithms
Feature extraction
Graph matching
Image analysis
Image detection
Image enhancement
Image quality
low-quality scenes
Machine learning
Object detection
Object recognition
Training
title Learning Cruxes to Push for Object Detection in Low-Quality Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Cruxes%20to%20Push%20for%20Object%20Detection%20in%20Low-Quality%20Images&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Fu,%20Chenping&rft.date=2024-12-01&rft.volume=34&rft.issue=12&rft.spage=12233&rft.epage=12243&rft.pages=12233-12243&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2024.3432580&rft_dat=%3Cproquest_RIE%3E3147528791%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147528791&rft_id=info:pmid/&rft_ieee_id=10606519&rfr_iscdi=true