Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning

This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2024-11, Vol.20 (11), p.12837-12847
Hauptverfasser: Liu, Xiang, Yan, Huaicheng, Zhou, Weixiang, Wang, Ning, Wang, Yueying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12847
container_issue 11
container_start_page 12837
container_title IEEE transactions on industrial informatics
container_volume 20
creator Liu, Xiang
Yan, Huaicheng
Zhou, Weixiang
Wang, Ning
Wang, Yueying
description This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the integral cascade form. Second, inheriting the advantages of prescribed performance control (PPC), the proposed controller not only stabilizes the tracking error within an asymmetric prescribed-time range, but also removes the limitation of initial conditions. Subsequently, the identifier-actor-critic architecture is introduced in the optimized backstepping design, which gives the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Meanwhile, the relative threshold event-triggered mechanism is also considered to reduce the communication burden and executive frequency of actuators. Finally, employing the Lyapunov stability theory, it is proven that all signals in the closed-loop system are bounded, and the developed control scheme is demonstrated to be effective through simulation and experimental results.
doi_str_mv 10.1109/TII.2024.3424573
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10604933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10604933</ieee_id><sourcerecordid>10_1109_TII_2024_3424573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-463444c4fdb919d111f4fdf8e34ba0862815e95a12736bef982132b30eeab9c13</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx7yB7ZmMtmPHKVULRQLuvW6ZLOTsrrdLcm24L83pR48zTC8zwvzMHYPYgYg9GO5XM6kkGqGSqo0xws2Aa0gESIVl3FPU0hQCrxmNyF8CYG5QD1h3eJI_ZiUvt1uyVPD1_ux3ZmOl97Y77bf8vnQj37ouBs83_QNxft4MGOMfhy8M5b4J4VAXeDH1vA3OvhIv1PbR8DSLrbzFRnfx65bduVMF-jub07Z5nlRzl-T1fplOX9aJRZUPiYqQ6WUVa6pNegGAFzcXUGoaiOKTBaQkk4NyByzmpwuJKCsURCZWlvAKRPnXuuHEDy5au_jU_6nAlGdbFXRVnWyVf3ZisjDGWmJ6F88E0oj4i-GFWe8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xiang ; Yan, Huaicheng ; Zhou, Weixiang ; Wang, Ning ; Wang, Yueying</creator><creatorcontrib>Liu, Xiang ; Yan, Huaicheng ; Zhou, Weixiang ; Wang, Ning ; Wang, Yueying</creatorcontrib><description>This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the integral cascade form. Second, inheriting the advantages of prescribed performance control (PPC), the proposed controller not only stabilizes the tracking error within an asymmetric prescribed-time range, but also removes the limitation of initial conditions. Subsequently, the identifier-actor-critic architecture is introduced in the optimized backstepping design, which gives the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Meanwhile, the relative threshold event-triggered mechanism is also considered to reduce the communication burden and executive frequency of actuators. Finally, employing the Lyapunov stability theory, it is proven that all signals in the closed-loop system are bounded, and the developed control scheme is demonstrated to be effective through simulation and experimental results.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3424573</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Backstepping ; Event-trigger ; Informatics ; Navigation ; optimized backstepping control ; prescribed performance control (PPC) ; Reinforcement learning ; reinforcement learning (RL) ; Trajectory ; Underactuated surface vessels ; unmanned surface vessels (USVs) ; Vectors</subject><ispartof>IEEE transactions on industrial informatics, 2024-11, Vol.20 (11), p.12837-12847</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5496-1809 ; 0000-0002-6763-6391 ; 0009-0000-2660-437X ; 0000-0003-1745-1425 ; 0000-0001-9737-6765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10604933$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10604933$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><creatorcontrib>Zhou, Weixiang</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Wang, Yueying</creatorcontrib><title>Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the integral cascade form. Second, inheriting the advantages of prescribed performance control (PPC), the proposed controller not only stabilizes the tracking error within an asymmetric prescribed-time range, but also removes the limitation of initial conditions. Subsequently, the identifier-actor-critic architecture is introduced in the optimized backstepping design, which gives the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Meanwhile, the relative threshold event-triggered mechanism is also considered to reduce the communication burden and executive frequency of actuators. Finally, employing the Lyapunov stability theory, it is proven that all signals in the closed-loop system are bounded, and the developed control scheme is demonstrated to be effective through simulation and experimental results.</description><subject>Backstepping</subject><subject>Event-trigger</subject><subject>Informatics</subject><subject>Navigation</subject><subject>optimized backstepping control</subject><subject>prescribed performance control (PPC)</subject><subject>Reinforcement learning</subject><subject>reinforcement learning (RL)</subject><subject>Trajectory</subject><subject>Underactuated surface vessels</subject><subject>unmanned surface vessels (USVs)</subject><subject>Vectors</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx7yB7ZmMtmPHKVULRQLuvW6ZLOTsrrdLcm24L83pR48zTC8zwvzMHYPYgYg9GO5XM6kkGqGSqo0xws2Aa0gESIVl3FPU0hQCrxmNyF8CYG5QD1h3eJI_ZiUvt1uyVPD1_ux3ZmOl97Y77bf8vnQj37ouBs83_QNxft4MGOMfhy8M5b4J4VAXeDH1vA3OvhIv1PbR8DSLrbzFRnfx65bduVMF-jub07Z5nlRzl-T1fplOX9aJRZUPiYqQ6WUVa6pNegGAFzcXUGoaiOKTBaQkk4NyByzmpwuJKCsURCZWlvAKRPnXuuHEDy5au_jU_6nAlGdbFXRVnWyVf3ZisjDGWmJ6F88E0oj4i-GFWe8</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Liu, Xiang</creator><creator>Yan, Huaicheng</creator><creator>Zhou, Weixiang</creator><creator>Wang, Ning</creator><creator>Wang, Yueying</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5496-1809</orcidid><orcidid>https://orcid.org/0000-0002-6763-6391</orcidid><orcidid>https://orcid.org/0009-0000-2660-437X</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid><orcidid>https://orcid.org/0000-0001-9737-6765</orcidid></search><sort><creationdate>202411</creationdate><title>Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning</title><author>Liu, Xiang ; Yan, Huaicheng ; Zhou, Weixiang ; Wang, Ning ; Wang, Yueying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-463444c4fdb919d111f4fdf8e34ba0862815e95a12736bef982132b30eeab9c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Backstepping</topic><topic>Event-trigger</topic><topic>Informatics</topic><topic>Navigation</topic><topic>optimized backstepping control</topic><topic>prescribed performance control (PPC)</topic><topic>Reinforcement learning</topic><topic>reinforcement learning (RL)</topic><topic>Trajectory</topic><topic>Underactuated surface vessels</topic><topic>unmanned surface vessels (USVs)</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><creatorcontrib>Zhou, Weixiang</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Wang, Yueying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiang</au><au>Yan, Huaicheng</au><au>Zhou, Weixiang</au><au>Wang, Ning</au><au>Wang, Yueying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-11</date><risdate>2024</risdate><volume>20</volume><issue>11</issue><spage>12837</spage><epage>12847</epage><pages>12837-12847</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the integral cascade form. Second, inheriting the advantages of prescribed performance control (PPC), the proposed controller not only stabilizes the tracking error within an asymmetric prescribed-time range, but also removes the limitation of initial conditions. Subsequently, the identifier-actor-critic architecture is introduced in the optimized backstepping design, which gives the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Meanwhile, the relative threshold event-triggered mechanism is also considered to reduce the communication burden and executive frequency of actuators. Finally, employing the Lyapunov stability theory, it is proven that all signals in the closed-loop system are bounded, and the developed control scheme is demonstrated to be effective through simulation and experimental results.</abstract><pub>IEEE</pub><doi>10.1109/TII.2024.3424573</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5496-1809</orcidid><orcidid>https://orcid.org/0000-0002-6763-6391</orcidid><orcidid>https://orcid.org/0009-0000-2660-437X</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid><orcidid>https://orcid.org/0000-0001-9737-6765</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-11, Vol.20 (11), p.12837-12847
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_10604933
source IEEE Electronic Library (IEL)
subjects Backstepping
Event-trigger
Informatics
Navigation
optimized backstepping control
prescribed performance control (PPC)
Reinforcement learning
reinforcement learning (RL)
Trajectory
Underactuated surface vessels
unmanned surface vessels (USVs)
Vectors
title Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Triggered%20Optimal%20Tracking%20Control%20for%20Underactuated%20Surface%20Vessels%20via%20Neural%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Xiang&rft.date=2024-11&rft.volume=20&rft.issue=11&rft.spage=12837&rft.epage=12847&rft.pages=12837-12847&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3424573&rft_dat=%3Ccrossref_RIE%3E10_1109_TII_2024_3424573%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10604933&rfr_iscdi=true