Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning
This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the inte...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2024-11, Vol.20 (11), p.12837-12847 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12847 |
---|---|
container_issue | 11 |
container_start_page | 12837 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | Liu, Xiang Yan, Huaicheng Zhou, Weixiang Wang, Ning Wang, Yueying |
description | This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the integral cascade form. Second, inheriting the advantages of prescribed performance control (PPC), the proposed controller not only stabilizes the tracking error within an asymmetric prescribed-time range, but also removes the limitation of initial conditions. Subsequently, the identifier-actor-critic architecture is introduced in the optimized backstepping design, which gives the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Meanwhile, the relative threshold event-triggered mechanism is also considered to reduce the communication burden and executive frequency of actuators. Finally, employing the Lyapunov stability theory, it is proven that all signals in the closed-loop system are bounded, and the developed control scheme is demonstrated to be effective through simulation and experimental results. |
doi_str_mv | 10.1109/TII.2024.3424573 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10604933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10604933</ieee_id><sourcerecordid>10_1109_TII_2024_3424573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c147t-463444c4fdb919d111f4fdf8e34ba0862815e95a12736bef982132b30eeab9c13</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx7yB7ZmMtmPHKVULRQLuvW6ZLOTsrrdLcm24L83pR48zTC8zwvzMHYPYgYg9GO5XM6kkGqGSqo0xws2Aa0gESIVl3FPU0hQCrxmNyF8CYG5QD1h3eJI_ZiUvt1uyVPD1_ux3ZmOl97Y77bf8vnQj37ouBs83_QNxft4MGOMfhy8M5b4J4VAXeDH1vA3OvhIv1PbR8DSLrbzFRnfx65bduVMF-jub07Z5nlRzl-T1fplOX9aJRZUPiYqQ6WUVa6pNegGAFzcXUGoaiOKTBaQkk4NyByzmpwuJKCsURCZWlvAKRPnXuuHEDy5au_jU_6nAlGdbFXRVnWyVf3ZisjDGWmJ6F88E0oj4i-GFWe8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Xiang ; Yan, Huaicheng ; Zhou, Weixiang ; Wang, Ning ; Wang, Yueying</creator><creatorcontrib>Liu, Xiang ; Yan, Huaicheng ; Zhou, Weixiang ; Wang, Ning ; Wang, Yueying</creatorcontrib><description>This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the integral cascade form. Second, inheriting the advantages of prescribed performance control (PPC), the proposed controller not only stabilizes the tracking error within an asymmetric prescribed-time range, but also removes the limitation of initial conditions. Subsequently, the identifier-actor-critic architecture is introduced in the optimized backstepping design, which gives the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Meanwhile, the relative threshold event-triggered mechanism is also considered to reduce the communication burden and executive frequency of actuators. Finally, employing the Lyapunov stability theory, it is proven that all signals in the closed-loop system are bounded, and the developed control scheme is demonstrated to be effective through simulation and experimental results.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2024.3424573</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>IEEE</publisher><subject>Backstepping ; Event-trigger ; Informatics ; Navigation ; optimized backstepping control ; prescribed performance control (PPC) ; Reinforcement learning ; reinforcement learning (RL) ; Trajectory ; Underactuated surface vessels ; unmanned surface vessels (USVs) ; Vectors</subject><ispartof>IEEE transactions on industrial informatics, 2024-11, Vol.20 (11), p.12837-12847</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5496-1809 ; 0000-0002-6763-6391 ; 0009-0000-2660-437X ; 0000-0003-1745-1425 ; 0000-0001-9737-6765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10604933$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10604933$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><creatorcontrib>Zhou, Weixiang</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Wang, Yueying</creatorcontrib><title>Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the integral cascade form. Second, inheriting the advantages of prescribed performance control (PPC), the proposed controller not only stabilizes the tracking error within an asymmetric prescribed-time range, but also removes the limitation of initial conditions. Subsequently, the identifier-actor-critic architecture is introduced in the optimized backstepping design, which gives the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Meanwhile, the relative threshold event-triggered mechanism is also considered to reduce the communication burden and executive frequency of actuators. Finally, employing the Lyapunov stability theory, it is proven that all signals in the closed-loop system are bounded, and the developed control scheme is demonstrated to be effective through simulation and experimental results.</description><subject>Backstepping</subject><subject>Event-trigger</subject><subject>Informatics</subject><subject>Navigation</subject><subject>optimized backstepping control</subject><subject>prescribed performance control (PPC)</subject><subject>Reinforcement learning</subject><subject>reinforcement learning (RL)</subject><subject>Trajectory</subject><subject>Underactuated surface vessels</subject><subject>unmanned surface vessels (USVs)</subject><subject>Vectors</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx7yB7ZmMtmPHKVULRQLuvW6ZLOTsrrdLcm24L83pR48zTC8zwvzMHYPYgYg9GO5XM6kkGqGSqo0xws2Aa0gESIVl3FPU0hQCrxmNyF8CYG5QD1h3eJI_ZiUvt1uyVPD1_ux3ZmOl97Y77bf8vnQj37ouBs83_QNxft4MGOMfhy8M5b4J4VAXeDH1vA3OvhIv1PbR8DSLrbzFRnfx65bduVMF-jub07Z5nlRzl-T1fplOX9aJRZUPiYqQ6WUVa6pNegGAFzcXUGoaiOKTBaQkk4NyByzmpwuJKCsURCZWlvAKRPnXuuHEDy5au_jU_6nAlGdbFXRVnWyVf3ZisjDGWmJ6F88E0oj4i-GFWe8</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Liu, Xiang</creator><creator>Yan, Huaicheng</creator><creator>Zhou, Weixiang</creator><creator>Wang, Ning</creator><creator>Wang, Yueying</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5496-1809</orcidid><orcidid>https://orcid.org/0000-0002-6763-6391</orcidid><orcidid>https://orcid.org/0009-0000-2660-437X</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid><orcidid>https://orcid.org/0000-0001-9737-6765</orcidid></search><sort><creationdate>202411</creationdate><title>Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning</title><author>Liu, Xiang ; Yan, Huaicheng ; Zhou, Weixiang ; Wang, Ning ; Wang, Yueying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c147t-463444c4fdb919d111f4fdf8e34ba0862815e95a12736bef982132b30eeab9c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Backstepping</topic><topic>Event-trigger</topic><topic>Informatics</topic><topic>Navigation</topic><topic>optimized backstepping control</topic><topic>prescribed performance control (PPC)</topic><topic>Reinforcement learning</topic><topic>reinforcement learning (RL)</topic><topic>Trajectory</topic><topic>Underactuated surface vessels</topic><topic>unmanned surface vessels (USVs)</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiang</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><creatorcontrib>Zhou, Weixiang</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Wang, Yueying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Xiang</au><au>Yan, Huaicheng</au><au>Zhou, Weixiang</au><au>Wang, Ning</au><au>Wang, Yueying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-11</date><risdate>2024</risdate><volume>20</volume><issue>11</issue><spage>12837</spage><epage>12847</epage><pages>12837-12847</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>This article presents a prescribed-time tracking control method for underactuated unmanned surface vessels (USVs) using a neural reinforcement learning (RL) approach. First, the hand position approach, addressing the underactuated characteristic, is employed to convert the model of USV into the integral cascade form. Second, inheriting the advantages of prescribed performance control (PPC), the proposed controller not only stabilizes the tracking error within an asymmetric prescribed-time range, but also removes the limitation of initial conditions. Subsequently, the identifier-actor-critic architecture is introduced in the optimized backstepping design, which gives the solution of the Hamilton-Jacobi-Bellman (HJB) equation. Meanwhile, the relative threshold event-triggered mechanism is also considered to reduce the communication burden and executive frequency of actuators. Finally, employing the Lyapunov stability theory, it is proven that all signals in the closed-loop system are bounded, and the developed control scheme is demonstrated to be effective through simulation and experimental results.</abstract><pub>IEEE</pub><doi>10.1109/TII.2024.3424573</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5496-1809</orcidid><orcidid>https://orcid.org/0000-0002-6763-6391</orcidid><orcidid>https://orcid.org/0009-0000-2660-437X</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid><orcidid>https://orcid.org/0000-0001-9737-6765</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-11, Vol.20 (11), p.12837-12847 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_10604933 |
source | IEEE Electronic Library (IEL) |
subjects | Backstepping Event-trigger Informatics Navigation optimized backstepping control prescribed performance control (PPC) Reinforcement learning reinforcement learning (RL) Trajectory Underactuated surface vessels unmanned surface vessels (USVs) Vectors |
title | Event-Triggered Optimal Tracking Control for Underactuated Surface Vessels via Neural Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Event-Triggered%20Optimal%20Tracking%20Control%20for%20Underactuated%20Surface%20Vessels%20via%20Neural%20Reinforcement%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Liu,%20Xiang&rft.date=2024-11&rft.volume=20&rft.issue=11&rft.spage=12837&rft.epage=12847&rft.pages=12837-12847&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2024.3424573&rft_dat=%3Ccrossref_RIE%3E10_1109_TII_2024_3424573%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10604933&rfr_iscdi=true |