An Adaptive Read Control Voltage Scheme for Reliability Enhancement of Flash-Based In-Memory Computing Architecture for Neural Network

The storage reliability is critical for flash memory based computing in-memory (CIM) architecture for Convolutional Neural Network (CNN). In this paper, we constructed a CIM scheme based on the Nor Flash array (NFA). We conducted simulations to investigate the impact of threshold voltage distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on device and materials reliability 2024-09, Vol.24 (3), p.422-427
Hauptverfasser: Zhang, Xinrui, Huang, Jian, Liu, Xianping, Zhong, Baiqing, Yu, Zhiyi
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 3
container_start_page 422
container_title IEEE transactions on device and materials reliability
container_volume 24
creator Zhang, Xinrui
Huang, Jian
Liu, Xianping
Zhong, Baiqing
Yu, Zhiyi
description The storage reliability is critical for flash memory based computing in-memory (CIM) architecture for Convolutional Neural Network (CNN). In this paper, we constructed a CIM scheme based on the Nor Flash array (NFA). We conducted simulations to investigate the impact of threshold voltage distribution and drift of Flash memory cells on the recognition accuracy for various CNN architectures based on the CIM schemes. Based on the reliability study, we proposed a novel compensation scheme to effectively mitigate the impact of threshold voltage drift and evaluated the effectiveness of the proposed scheme by recognition accuracy evaluation.
doi_str_mv 10.1109/TDMR.2024.3429662
format Magazinearticle
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10601194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10601194</ieee_id><sourcerecordid>3101348813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-3dc6e6a67df03920b71efd6c3b9759ae46f4459d515c7c5bc8483a0cd90804de3</originalsourceid><addsrcrecordid>eNpNkN1OgzAUx4nRxDl9ABMvmnjNbGkpcIlz0yVTkzm9JaU9DCZQLEWzF_C5hbALr85J_h8n5-c41wTPCMHR3fbheTPzsMdmlHkR596JMyG-H7qeH7DTYafYZTQMz52Ltt1jTKLA5xPnN65RrERji29AGxAKzXVtjS7Rhy6t2AF6kzlUgDJter0sRFqUhT2gRZ2LWvZKbZHO0LIUbe7eixYUWtXuM1TaHPququlsUe9QbGReWJC2M2PXC3RGlP2wP9p8XjpnmShbuDrOqfO-XGznT-769XE1j9euJAG3LlWSAxc8UBmmkYfTgECmuKRp_00kgPGMMT9SPvFlIP1UhiykAksV4RAzBXTq3I69jdFfHbQ22evO1P3JhBJMKAtDQnsXGV3S6LY1kCWNKSphDgnByYA7GXAnA-7kiLvP3IyZAgD--TkmJGL0D3J0fSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>3101348813</pqid></control><display><type>magazinearticle</type><title>An Adaptive Read Control Voltage Scheme for Reliability Enhancement of Flash-Based In-Memory Computing Architecture for Neural Network</title><source>IEEE Xplore</source><creator>Zhang, Xinrui ; Huang, Jian ; Liu, Xianping ; Zhong, Baiqing ; Yu, Zhiyi</creator><creatorcontrib>Zhang, Xinrui ; Huang, Jian ; Liu, Xianping ; Zhong, Baiqing ; Yu, Zhiyi</creatorcontrib><description>The storage reliability is critical for flash memory based computing in-memory (CIM) architecture for Convolutional Neural Network (CNN). In this paper, we constructed a CIM scheme based on the Nor Flash array (NFA). We conducted simulations to investigate the impact of threshold voltage distribution and drift of Flash memory cells on the recognition accuracy for various CNN architectures based on the CIM schemes. Based on the reliability study, we proposed a novel compensation scheme to effectively mitigate the impact of threshold voltage drift and evaluated the effectiveness of the proposed scheme by recognition accuracy evaluation.</description><identifier>ISSN: 1530-4388</identifier><identifier>EISSN: 1558-2574</identifier><identifier>DOI: 10.1109/TDMR.2024.3429662</identifier><identifier>CODEN: ITDMA2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptive control ; Artificial neural networks ; Computation ; Computing-in-memory ; convolutional neural network ; Convolutional neural networks ; Drift ; Flash memories ; Flash memory (computers) ; flash memory reliability ; In-memory computing ; multi-level NOR-flash ; Network reliability ; Recognition ; Reliability ; Reliability analysis ; Threshold voltage ; Transistors</subject><ispartof>IEEE transactions on device and materials reliability, 2024-09, Vol.24 (3), p.422-427</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-3dc6e6a67df03920b71efd6c3b9759ae46f4459d515c7c5bc8483a0cd90804de3</cites><orcidid>0009-0008-3110-5223 ; 0009-0003-1106-4616 ; 0009-0002-3301-6861 ; 0000-0002-8802-0457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10601194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>776,780,792,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10601194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xinrui</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Liu, Xianping</creatorcontrib><creatorcontrib>Zhong, Baiqing</creatorcontrib><creatorcontrib>Yu, Zhiyi</creatorcontrib><title>An Adaptive Read Control Voltage Scheme for Reliability Enhancement of Flash-Based In-Memory Computing Architecture for Neural Network</title><title>IEEE transactions on device and materials reliability</title><addtitle>TDMR</addtitle><description>The storage reliability is critical for flash memory based computing in-memory (CIM) architecture for Convolutional Neural Network (CNN). In this paper, we constructed a CIM scheme based on the Nor Flash array (NFA). We conducted simulations to investigate the impact of threshold voltage distribution and drift of Flash memory cells on the recognition accuracy for various CNN architectures based on the CIM schemes. Based on the reliability study, we proposed a novel compensation scheme to effectively mitigate the impact of threshold voltage drift and evaluated the effectiveness of the proposed scheme by recognition accuracy evaluation.</description><subject>Accuracy</subject><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Computation</subject><subject>Computing-in-memory</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Drift</subject><subject>Flash memories</subject><subject>Flash memory (computers)</subject><subject>flash memory reliability</subject><subject>In-memory computing</subject><subject>multi-level NOR-flash</subject><subject>Network reliability</subject><subject>Recognition</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Threshold voltage</subject><subject>Transistors</subject><issn>1530-4388</issn><issn>1558-2574</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2024</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1OgzAUx4nRxDl9ABMvmnjNbGkpcIlz0yVTkzm9JaU9DCZQLEWzF_C5hbALr85J_h8n5-c41wTPCMHR3fbheTPzsMdmlHkR596JMyG-H7qeH7DTYafYZTQMz52Ltt1jTKLA5xPnN65RrERji29AGxAKzXVtjS7Rhy6t2AF6kzlUgDJter0sRFqUhT2gRZ2LWvZKbZHO0LIUbe7eixYUWtXuM1TaHPququlsUe9QbGReWJC2M2PXC3RGlP2wP9p8XjpnmShbuDrOqfO-XGznT-769XE1j9euJAG3LlWSAxc8UBmmkYfTgECmuKRp_00kgPGMMT9SPvFlIP1UhiykAksV4RAzBXTq3I69jdFfHbQ22evO1P3JhBJMKAtDQnsXGV3S6LY1kCWNKSphDgnByYA7GXAnA-7kiLvP3IyZAgD--TkmJGL0D3J0fSc</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhang, Xinrui</creator><creator>Huang, Jian</creator><creator>Liu, Xianping</creator><creator>Zhong, Baiqing</creator><creator>Yu, Zhiyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0008-3110-5223</orcidid><orcidid>https://orcid.org/0009-0003-1106-4616</orcidid><orcidid>https://orcid.org/0009-0002-3301-6861</orcidid><orcidid>https://orcid.org/0000-0002-8802-0457</orcidid></search><sort><creationdate>20240901</creationdate><title>An Adaptive Read Control Voltage Scheme for Reliability Enhancement of Flash-Based In-Memory Computing Architecture for Neural Network</title><author>Zhang, Xinrui ; Huang, Jian ; Liu, Xianping ; Zhong, Baiqing ; Yu, Zhiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-3dc6e6a67df03920b71efd6c3b9759ae46f4459d515c7c5bc8483a0cd90804de3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Computation</topic><topic>Computing-in-memory</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Drift</topic><topic>Flash memories</topic><topic>Flash memory (computers)</topic><topic>flash memory reliability</topic><topic>In-memory computing</topic><topic>multi-level NOR-flash</topic><topic>Network reliability</topic><topic>Recognition</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Threshold voltage</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinrui</creatorcontrib><creatorcontrib>Huang, Jian</creatorcontrib><creatorcontrib>Liu, Xianping</creatorcontrib><creatorcontrib>Zhong, Baiqing</creatorcontrib><creatorcontrib>Yu, Zhiyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on device and materials reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xinrui</au><au>Huang, Jian</au><au>Liu, Xianping</au><au>Zhong, Baiqing</au><au>Yu, Zhiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Read Control Voltage Scheme for Reliability Enhancement of Flash-Based In-Memory Computing Architecture for Neural Network</atitle><jtitle>IEEE transactions on device and materials reliability</jtitle><stitle>TDMR</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>24</volume><issue>3</issue><spage>422</spage><epage>427</epage><pages>422-427</pages><issn>1530-4388</issn><eissn>1558-2574</eissn><coden>ITDMA2</coden><abstract>The storage reliability is critical for flash memory based computing in-memory (CIM) architecture for Convolutional Neural Network (CNN). In this paper, we constructed a CIM scheme based on the Nor Flash array (NFA). We conducted simulations to investigate the impact of threshold voltage distribution and drift of Flash memory cells on the recognition accuracy for various CNN architectures based on the CIM schemes. Based on the reliability study, we proposed a novel compensation scheme to effectively mitigate the impact of threshold voltage drift and evaluated the effectiveness of the proposed scheme by recognition accuracy evaluation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TDMR.2024.3429662</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0008-3110-5223</orcidid><orcidid>https://orcid.org/0009-0003-1106-4616</orcidid><orcidid>https://orcid.org/0009-0002-3301-6861</orcidid><orcidid>https://orcid.org/0000-0002-8802-0457</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-4388
ispartof IEEE transactions on device and materials reliability, 2024-09, Vol.24 (3), p.422-427
issn 1530-4388
1558-2574
language eng
recordid cdi_ieee_primary_10601194
source IEEE Xplore
subjects Accuracy
Adaptive control
Artificial neural networks
Computation
Computing-in-memory
convolutional neural network
Convolutional neural networks
Drift
Flash memories
Flash memory (computers)
flash memory reliability
In-memory computing
multi-level NOR-flash
Network reliability
Recognition
Reliability
Reliability analysis
Threshold voltage
Transistors
title An Adaptive Read Control Voltage Scheme for Reliability Enhancement of Flash-Based In-Memory Computing Architecture for Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Read%20Control%20Voltage%20Scheme%20for%20Reliability%20Enhancement%20of%20Flash-Based%20In-Memory%20Computing%20Architecture%20for%20Neural%20Network&rft.jtitle=IEEE%20transactions%20on%20device%20and%20materials%20reliability&rft.au=Zhang,%20Xinrui&rft.date=2024-09-01&rft.volume=24&rft.issue=3&rft.spage=422&rft.epage=427&rft.pages=422-427&rft.issn=1530-4388&rft.eissn=1558-2574&rft.coden=ITDMA2&rft_id=info:doi/10.1109/TDMR.2024.3429662&rft_dat=%3Cproquest_RIE%3E3101348813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101348813&rft_id=info:pmid/&rft_ieee_id=10601194&rfr_iscdi=true