High-Speed Motion Planning for Aerial Swarms in Unknown and Cluttered Environments

Coordinated flight of multiple drones allows to achieve tasks faster such as search and rescue and infrastructure inspection. Thus, pushing the State-of-the-Art of aerial swarms in navigation speed and robustness is of tremendous benefit. In particular, being able to account for unexplored/unknown e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2024, Vol.40, p.3642-3656
Hauptverfasser: Toumieh, Charbel, Floreano, Dario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3656
container_issue
container_start_page 3642
container_title IEEE transactions on robotics
container_volume 40
creator Toumieh, Charbel
Floreano, Dario
description Coordinated flight of multiple drones allows to achieve tasks faster such as search and rescue and infrastructure inspection. Thus, pushing the State-of-the-Art of aerial swarms in navigation speed and robustness is of tremendous benefit. In particular, being able to account for unexplored/unknown environments when planning trajectories allows for safer flight. In this work, we propose the first high-speed, decentralized, and synchronous motion planning framework (HDSM) for an aerial swarm that explicitly takes into account the unknown/undiscovered parts of the environment. The proposed approach generates an optimized trajectory for each planning agent that avoids obstacles and other planning agents while moving and exploring the environment. The only global information that each agent has is the target location. The generated trajectory is high-speed, safe from unexplored spaces, and brings the agent closer to its goal. The proposed method outperforms four recent state-of-the-art methods in success rate (100% success in reaching the target location), flight speed (97% faster), and flight time (50% lower). Finally, the method is validated on a set of Crazyflie nano-drones as a proof of concept.
doi_str_mv 10.1109/TRO.2024.3429193
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10599811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10599811</ieee_id><sourcerecordid>10_1109_TRO_2024_3429193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-2f3666a383ec18f135a7f767d6483492fa3cda63c64ac4eb889e710441f459853</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzD4D6TYeY5jj1VUKFJRUT_myCTPxZA4lR2o-Pekagemd_V0zx0OIfecTThn-nGzWk5SlooJiFRzDRdkxLXgCRNSXQ45y9IEmFbX5CbGTzY0NYMRWc3d7iNZ7xFr-tr1rvP0rTHeO7-jtgt0isGZhq4PJrSROk-3_st3B0-Nr2nRfPc9hgGd-R8XOt-i7-MtubKmiXh3vmOyfZptinmyWD6_FNNFUnGl-yS1IKU0oACHh-WQmdzmMq-lUCB0ag1UtZFQSWEqge9Kacw5E4JbkWmVwZiw024VuhgD2nIfXGvCb8lZeXRSDk7Ko5Py7GRAHk6IQ8R_9UxrxTn8ARJ_XUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Speed Motion Planning for Aerial Swarms in Unknown and Cluttered Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Toumieh, Charbel ; Floreano, Dario</creator><creatorcontrib>Toumieh, Charbel ; Floreano, Dario</creatorcontrib><description>Coordinated flight of multiple drones allows to achieve tasks faster such as search and rescue and infrastructure inspection. Thus, pushing the State-of-the-Art of aerial swarms in navigation speed and robustness is of tremendous benefit. In particular, being able to account for unexplored/unknown environments when planning trajectories allows for safer flight. In this work, we propose the first high-speed, decentralized, and synchronous motion planning framework (HDSM) for an aerial swarm that explicitly takes into account the unknown/undiscovered parts of the environment. The proposed approach generates an optimized trajectory for each planning agent that avoids obstacles and other planning agents while moving and exploring the environment. The only global information that each agent has is the target location. The generated trajectory is high-speed, safe from unexplored spaces, and brings the agent closer to its goal. The proposed method outperforms four recent state-of-the-art methods in success rate (100% success in reaching the target location), flight speed (97% faster), and flight time (50% lower). Finally, the method is validated on a set of Crazyflie nano-drones as a proof of concept.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2024.3429193</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerial swarms ; Delays ; Drones ; high-speed navigation ; motion planning ; obstacle avoidance ; Planning ; Point cloud compression ; Safety ; Sensors ; Trajectory</subject><ispartof>IEEE transactions on robotics, 2024, Vol.40, p.3642-3656</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-2f3666a383ec18f135a7f767d6483492fa3cda63c64ac4eb889e710441f459853</cites><orcidid>0000-0002-5330-4863 ; 0000-0002-2669-6777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10599811$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10599811$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Toumieh, Charbel</creatorcontrib><creatorcontrib>Floreano, Dario</creatorcontrib><title>High-Speed Motion Planning for Aerial Swarms in Unknown and Cluttered Environments</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Coordinated flight of multiple drones allows to achieve tasks faster such as search and rescue and infrastructure inspection. Thus, pushing the State-of-the-Art of aerial swarms in navigation speed and robustness is of tremendous benefit. In particular, being able to account for unexplored/unknown environments when planning trajectories allows for safer flight. In this work, we propose the first high-speed, decentralized, and synchronous motion planning framework (HDSM) for an aerial swarm that explicitly takes into account the unknown/undiscovered parts of the environment. The proposed approach generates an optimized trajectory for each planning agent that avoids obstacles and other planning agents while moving and exploring the environment. The only global information that each agent has is the target location. The generated trajectory is high-speed, safe from unexplored spaces, and brings the agent closer to its goal. The proposed method outperforms four recent state-of-the-art methods in success rate (100% success in reaching the target location), flight speed (97% faster), and flight time (50% lower). Finally, the method is validated on a set of Crazyflie nano-drones as a proof of concept.</description><subject>Aerial swarms</subject><subject>Delays</subject><subject>Drones</subject><subject>high-speed navigation</subject><subject>motion planning</subject><subject>obstacle avoidance</subject><subject>Planning</subject><subject>Point cloud compression</subject><subject>Safety</subject><subject>Sensors</subject><subject>Trajectory</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzD4D6TYeY5jj1VUKFJRUT_myCTPxZA4lR2o-Pekagemd_V0zx0OIfecTThn-nGzWk5SlooJiFRzDRdkxLXgCRNSXQ45y9IEmFbX5CbGTzY0NYMRWc3d7iNZ7xFr-tr1rvP0rTHeO7-jtgt0isGZhq4PJrSROk-3_st3B0-Nr2nRfPc9hgGd-R8XOt-i7-MtubKmiXh3vmOyfZptinmyWD6_FNNFUnGl-yS1IKU0oACHh-WQmdzmMq-lUCB0ag1UtZFQSWEqge9Kacw5E4JbkWmVwZiw024VuhgD2nIfXGvCb8lZeXRSDk7Ko5Py7GRAHk6IQ8R_9UxrxTn8ARJ_XUk</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Toumieh, Charbel</creator><creator>Floreano, Dario</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5330-4863</orcidid><orcidid>https://orcid.org/0000-0002-2669-6777</orcidid></search><sort><creationdate>2024</creationdate><title>High-Speed Motion Planning for Aerial Swarms in Unknown and Cluttered Environments</title><author>Toumieh, Charbel ; Floreano, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-2f3666a383ec18f135a7f767d6483492fa3cda63c64ac4eb889e710441f459853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerial swarms</topic><topic>Delays</topic><topic>Drones</topic><topic>high-speed navigation</topic><topic>motion planning</topic><topic>obstacle avoidance</topic><topic>Planning</topic><topic>Point cloud compression</topic><topic>Safety</topic><topic>Sensors</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toumieh, Charbel</creatorcontrib><creatorcontrib>Floreano, Dario</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Toumieh, Charbel</au><au>Floreano, Dario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Speed Motion Planning for Aerial Swarms in Unknown and Cluttered Environments</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2024</date><risdate>2024</risdate><volume>40</volume><spage>3642</spage><epage>3656</epage><pages>3642-3656</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Coordinated flight of multiple drones allows to achieve tasks faster such as search and rescue and infrastructure inspection. Thus, pushing the State-of-the-Art of aerial swarms in navigation speed and robustness is of tremendous benefit. In particular, being able to account for unexplored/unknown environments when planning trajectories allows for safer flight. In this work, we propose the first high-speed, decentralized, and synchronous motion planning framework (HDSM) for an aerial swarm that explicitly takes into account the unknown/undiscovered parts of the environment. The proposed approach generates an optimized trajectory for each planning agent that avoids obstacles and other planning agents while moving and exploring the environment. The only global information that each agent has is the target location. The generated trajectory is high-speed, safe from unexplored spaces, and brings the agent closer to its goal. The proposed method outperforms four recent state-of-the-art methods in success rate (100% success in reaching the target location), flight speed (97% faster), and flight time (50% lower). Finally, the method is validated on a set of Crazyflie nano-drones as a proof of concept.</abstract><pub>IEEE</pub><doi>10.1109/TRO.2024.3429193</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5330-4863</orcidid><orcidid>https://orcid.org/0000-0002-2669-6777</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2024, Vol.40, p.3642-3656
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_10599811
source IEEE Electronic Library (IEL)
subjects Aerial swarms
Delays
Drones
high-speed navigation
motion planning
obstacle avoidance
Planning
Point cloud compression
Safety
Sensors
Trajectory
title High-Speed Motion Planning for Aerial Swarms in Unknown and Cluttered Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Speed%20Motion%20Planning%20for%20Aerial%20Swarms%20in%20Unknown%20and%20Cluttered%20Environments&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Toumieh,%20Charbel&rft.date=2024&rft.volume=40&rft.spage=3642&rft.epage=3656&rft.pages=3642-3656&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2024.3429193&rft_dat=%3Ccrossref_RIE%3E10_1109_TRO_2024_3429193%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10599811&rfr_iscdi=true