Multimaterial Soft Gripper Design With Dual-Mode Pinches for Grasping in Confined Spaces
Pinch is an indispensable grasping primitive of human hands and traditional rigid grippers, eminently suitable for handling small-sized and dense objects, but it is rather under-researched in the context of soft robotics. In this article, with the aim of combining the inherent advantages of soft mat...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2024-07, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | |
creator | Chen, Feifei Chen, Shitong Wang, Yiqiang Li, Dechen Song, Zenan Gu, Guoying Zhu, Xiangyang |
description | Pinch is an indispensable grasping primitive of human hands and traditional rigid grippers, eminently suitable for handling small-sized and dense objects, but it is rather under-researched in the context of soft robotics. In this article, with the aim of combining the inherent advantages of soft materials and the pinch grasp primitive to enable delicate object manipulation in confined spaces without causing damage, we present a compliant, compact, and powerful gripper capable of pinching small objects in two deformation modes: abduction and adduction. The design is enabled by a density-based multimaterial topology optimization approach that automatically seeks the optimal tradeoff between the expected deformation and gripping force. The optimized design mainly contains two materials, and is fabricated with a customized voxel 3-D printing strategy by controlling the local mixing ratio of the soft and hard inks. The simulation and experiments show that the obtained multimaterial design remarkably outperforms the single material design in terms of deformation and payload. We demonstrate that an array of the designed grippers can work collectively to grasp dense objects in a single process. Further, the gripper can work as an end effector of a hyper-redundant robot arm that navigates a narrow space, and fetch small objects therein with compliance and safety. |
doi_str_mv | 10.1109/TMECH.2024.3422485 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10599478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10599478</ieee_id><sourcerecordid>10_1109_TMECH_2024_3422485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-77e1b9c1f13128052c1d8403b0b19b0a45275b5234e1eeace4a2638e90642763</originalsourceid><addsrcrecordid>eNpNkMFOwkAQhjdGExF9AeNhX6A4szul3aMBBBOIJpDIrdmWKaypbbNbDr69RTh4mv8w35_8nxCPCCNEMM-b1WyyGClQNNKkFKXxlRigIYwAaXvdZ0h1RKTjW3EXwhcAEAIOxHZ1rDr3bTv2zlZy3ZSdnHvXtuzllIPb1_LTdQc5PdoqWjU7lh-uLg4cZNn4_tOG1tV76Wo5aerS1byT69YWHO7FTWmrwA-XOxSb19lmsoiW7_O3ycsyKpBMFyUJY24KLFGjSiFWBe5SAp1DjiYHS7FK4jxWmhiZ-2KyaqxTNjAmlYz1UKhzbeGbEDyXWev7Of4nQ8hOarI_NdlJTXZR00NPZ8gx8z8gNoaSVP8CVfdfcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multimaterial Soft Gripper Design With Dual-Mode Pinches for Grasping in Confined Spaces</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Feifei ; Chen, Shitong ; Wang, Yiqiang ; Li, Dechen ; Song, Zenan ; Gu, Guoying ; Zhu, Xiangyang</creator><creatorcontrib>Chen, Feifei ; Chen, Shitong ; Wang, Yiqiang ; Li, Dechen ; Song, Zenan ; Gu, Guoying ; Zhu, Xiangyang</creatorcontrib><description>Pinch is an indispensable grasping primitive of human hands and traditional rigid grippers, eminently suitable for handling small-sized and dense objects, but it is rather under-researched in the context of soft robotics. In this article, with the aim of combining the inherent advantages of soft materials and the pinch grasp primitive to enable delicate object manipulation in confined spaces without causing damage, we present a compliant, compact, and powerful gripper capable of pinching small objects in two deformation modes: abduction and adduction. The design is enabled by a density-based multimaterial topology optimization approach that automatically seeks the optimal tradeoff between the expected deformation and gripping force. The optimized design mainly contains two materials, and is fabricated with a customized voxel 3-D printing strategy by controlling the local mixing ratio of the soft and hard inks. The simulation and experiments show that the obtained multimaterial design remarkably outperforms the single material design in terms of deformation and payload. We demonstrate that an array of the designed grippers can work collectively to grasp dense objects in a single process. Further, the gripper can work as an end effector of a hyper-redundant robot arm that navigates a narrow space, and fetch small objects therein with compliance and safety.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2024.3422485</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>IEEE</publisher><subject>3-D printing ; Force ; Grasping ; Grippers ; multimaterial topology optimization ; Optimization ; pinch grasp ; Robots ; soft robotics ; Task analysis ; Topology</subject><ispartof>IEEE/ASME transactions on mechatronics, 2024-07, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6733-1259 ; 0000-0002-2371-2874 ; 0000-0003-4914-6636 ; 0009-0004-3460-9153 ; 0000-0002-7778-4523 ; 0009-0000-2288-8141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10599478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10599478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Feifei</creatorcontrib><creatorcontrib>Chen, Shitong</creatorcontrib><creatorcontrib>Wang, Yiqiang</creatorcontrib><creatorcontrib>Li, Dechen</creatorcontrib><creatorcontrib>Song, Zenan</creatorcontrib><creatorcontrib>Gu, Guoying</creatorcontrib><creatorcontrib>Zhu, Xiangyang</creatorcontrib><title>Multimaterial Soft Gripper Design With Dual-Mode Pinches for Grasping in Confined Spaces</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Pinch is an indispensable grasping primitive of human hands and traditional rigid grippers, eminently suitable for handling small-sized and dense objects, but it is rather under-researched in the context of soft robotics. In this article, with the aim of combining the inherent advantages of soft materials and the pinch grasp primitive to enable delicate object manipulation in confined spaces without causing damage, we present a compliant, compact, and powerful gripper capable of pinching small objects in two deformation modes: abduction and adduction. The design is enabled by a density-based multimaterial topology optimization approach that automatically seeks the optimal tradeoff between the expected deformation and gripping force. The optimized design mainly contains two materials, and is fabricated with a customized voxel 3-D printing strategy by controlling the local mixing ratio of the soft and hard inks. The simulation and experiments show that the obtained multimaterial design remarkably outperforms the single material design in terms of deformation and payload. We demonstrate that an array of the designed grippers can work collectively to grasp dense objects in a single process. Further, the gripper can work as an end effector of a hyper-redundant robot arm that navigates a narrow space, and fetch small objects therein with compliance and safety.</description><subject>3-D printing</subject><subject>Force</subject><subject>Grasping</subject><subject>Grippers</subject><subject>multimaterial topology optimization</subject><subject>Optimization</subject><subject>pinch grasp</subject><subject>Robots</subject><subject>soft robotics</subject><subject>Task analysis</subject><subject>Topology</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwkAQhjdGExF9AeNhX6A4szul3aMBBBOIJpDIrdmWKaypbbNbDr69RTh4mv8w35_8nxCPCCNEMM-b1WyyGClQNNKkFKXxlRigIYwAaXvdZ0h1RKTjW3EXwhcAEAIOxHZ1rDr3bTv2zlZy3ZSdnHvXtuzllIPb1_LTdQc5PdoqWjU7lh-uLg4cZNn4_tOG1tV76Wo5aerS1byT69YWHO7FTWmrwA-XOxSb19lmsoiW7_O3ycsyKpBMFyUJY24KLFGjSiFWBe5SAp1DjiYHS7FK4jxWmhiZ-2KyaqxTNjAmlYz1UKhzbeGbEDyXWev7Of4nQ8hOarI_NdlJTXZR00NPZ8gx8z8gNoaSVP8CVfdfcg</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Chen, Feifei</creator><creator>Chen, Shitong</creator><creator>Wang, Yiqiang</creator><creator>Li, Dechen</creator><creator>Song, Zenan</creator><creator>Gu, Guoying</creator><creator>Zhu, Xiangyang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6733-1259</orcidid><orcidid>https://orcid.org/0000-0002-2371-2874</orcidid><orcidid>https://orcid.org/0000-0003-4914-6636</orcidid><orcidid>https://orcid.org/0009-0004-3460-9153</orcidid><orcidid>https://orcid.org/0000-0002-7778-4523</orcidid><orcidid>https://orcid.org/0009-0000-2288-8141</orcidid></search><sort><creationdate>20240717</creationdate><title>Multimaterial Soft Gripper Design With Dual-Mode Pinches for Grasping in Confined Spaces</title><author>Chen, Feifei ; Chen, Shitong ; Wang, Yiqiang ; Li, Dechen ; Song, Zenan ; Gu, Guoying ; Zhu, Xiangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-77e1b9c1f13128052c1d8403b0b19b0a45275b5234e1eeace4a2638e90642763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printing</topic><topic>Force</topic><topic>Grasping</topic><topic>Grippers</topic><topic>multimaterial topology optimization</topic><topic>Optimization</topic><topic>pinch grasp</topic><topic>Robots</topic><topic>soft robotics</topic><topic>Task analysis</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Feifei</creatorcontrib><creatorcontrib>Chen, Shitong</creatorcontrib><creatorcontrib>Wang, Yiqiang</creatorcontrib><creatorcontrib>Li, Dechen</creatorcontrib><creatorcontrib>Song, Zenan</creatorcontrib><creatorcontrib>Gu, Guoying</creatorcontrib><creatorcontrib>Zhu, Xiangyang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Feifei</au><au>Chen, Shitong</au><au>Wang, Yiqiang</au><au>Li, Dechen</au><au>Song, Zenan</au><au>Gu, Guoying</au><au>Zhu, Xiangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimaterial Soft Gripper Design With Dual-Mode Pinches for Grasping in Confined Spaces</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2024-07-17</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Pinch is an indispensable grasping primitive of human hands and traditional rigid grippers, eminently suitable for handling small-sized and dense objects, but it is rather under-researched in the context of soft robotics. In this article, with the aim of combining the inherent advantages of soft materials and the pinch grasp primitive to enable delicate object manipulation in confined spaces without causing damage, we present a compliant, compact, and powerful gripper capable of pinching small objects in two deformation modes: abduction and adduction. The design is enabled by a density-based multimaterial topology optimization approach that automatically seeks the optimal tradeoff between the expected deformation and gripping force. The optimized design mainly contains two materials, and is fabricated with a customized voxel 3-D printing strategy by controlling the local mixing ratio of the soft and hard inks. The simulation and experiments show that the obtained multimaterial design remarkably outperforms the single material design in terms of deformation and payload. We demonstrate that an array of the designed grippers can work collectively to grasp dense objects in a single process. Further, the gripper can work as an end effector of a hyper-redundant robot arm that navigates a narrow space, and fetch small objects therein with compliance and safety.</abstract><pub>IEEE</pub><doi>10.1109/TMECH.2024.3422485</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6733-1259</orcidid><orcidid>https://orcid.org/0000-0002-2371-2874</orcidid><orcidid>https://orcid.org/0000-0003-4914-6636</orcidid><orcidid>https://orcid.org/0009-0004-3460-9153</orcidid><orcidid>https://orcid.org/0000-0002-7778-4523</orcidid><orcidid>https://orcid.org/0009-0000-2288-8141</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2024-07, p.1-12 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_ieee_primary_10599478 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D printing Force Grasping Grippers multimaterial topology optimization Optimization pinch grasp Robots soft robotics Task analysis Topology |
title | Multimaterial Soft Gripper Design With Dual-Mode Pinches for Grasping in Confined Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimaterial%20Soft%20Gripper%20Design%20With%20Dual-Mode%20Pinches%20for%20Grasping%20in%20Confined%20Spaces&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Chen,%20Feifei&rft.date=2024-07-17&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2024.3422485&rft_dat=%3Ccrossref_RIE%3E10_1109_TMECH_2024_3422485%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10599478&rfr_iscdi=true |