An RF-Visual Directional Fusion Framework for Precise UAV Positioning

Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-11, Vol.11 (22), p.36736-36747
Hauptverfasser: Xie, Wenqing, Wan, Yiyao, Wu, Guangyu, Li, Yihao, Zhou, Fuhui, Wu, Qihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36747
container_issue 22
container_start_page 36736
container_title IEEE internet of things journal
container_volume 11
creator Xie, Wenqing
Wan, Yiyao
Wu, Guangyu
Li, Yihao
Zhou, Fuhui
Wu, Qihui
description Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its performance is confined due to the small size of the target and its high susceptibility to disturbance caused by birds or other aircraft. To tackle this problem, a radio-frequency (RF)-visual directional fusion framework is proposed for precise UAV positioning. In the framework, radio signals are aligned with images by jointly calibrating the array antenna and camera. The spatial spectrum is extracted by an array antenna to concentrate on target areas within the image modal. Moreover, in order to improve the precision of joint calibration, a segmentation-based denoising method is proposed to remove the spectrum noise. Furthermore, a practical anti-UAV positioning platform is established, and two synchronized data sets, which include visual images and UAV RF signals, are collected on the platform. Experimental results demonstrate that our proposed framework improves positioning accuracy and robustness compared to the benchmark methods.
doi_str_mv 10.1109/JIOT.2024.3424271
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10597658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10597658</ieee_id><sourcerecordid>3126087487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-17cf03784caa998ea4d3fadea347e11e74e278ea24d3fcf7d3e103275bebc9ea3</originalsourceid><addsrcrecordid>eNpNkF9rwjAUxcPYYOL8AIM9BPZcl39t2sfi7OYQlKG-hpjejjhtXGIZ-_ZL0Qef7uHe37kcDkKPlIwpJcXLx2yxGjPCxJgLJpikN2jAOJOJyDJ2e6Xv0SiEHSEk2lJaZAM0LVv8WSUbGzq9x6_WgzlZ10ZddSEKXHl9gF_nv3HjPF7Guw2A1-UGL12wPWvbrwd01-h9gNFlDtG6mq4m78l88TablPPEUJmdEipNQ7jMhdG6KHLQouaNrkFzIYFSkAKYjGvW700jaw6UxOzpFramiNgQPZ__Hr376SCc1M51PqYNilOWkVyKXEaKninjXQgeGnX09qD9n6JE9YWpvjDVF6YuhUXP09ljAeCKTwuZpTn_B9TtZoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126087487</pqid></control><display><type>article</type><title>An RF-Visual Directional Fusion Framework for Precise UAV Positioning</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Wenqing ; Wan, Yiyao ; Wu, Guangyu ; Li, Yihao ; Zhou, Fuhui ; Wu, Qihui</creator><creatorcontrib>Xie, Wenqing ; Wan, Yiyao ; Wu, Guangyu ; Li, Yihao ; Zhou, Fuhui ; Wu, Qihui</creatorcontrib><description>Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its performance is confined due to the small size of the target and its high susceptibility to disturbance caused by birds or other aircraft. To tackle this problem, a radio-frequency (RF)-visual directional fusion framework is proposed for precise UAV positioning. In the framework, radio signals are aligned with images by jointly calibrating the array antenna and camera. The spatial spectrum is extracted by an array antenna to concentrate on target areas within the image modal. Moreover, in order to improve the precision of joint calibration, a segmentation-based denoising method is proposed to remove the spectrum noise. Furthermore, a practical anti-UAV positioning platform is established, and two synchronized data sets, which include visual images and UAV RF signals, are collected on the platform. Experimental results demonstrate that our proposed framework improves positioning accuracy and robustness compared to the benchmark methods.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3424271</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aircraft performance ; Antenna arrays ; Antennas ; Autonomous aerial vehicles ; Birds ; Calibration ; Cameras ; Image segmentation ; Precise unmanned aerial vehicle (UAV) positioning ; Radio frequency ; Radio signals ; radio-frequency (RF)-visual directional fusion framework ; Real time operation ; segmentation-based denoising method ; Sensors ; Unmanned aerial vehicles ; Visual signals ; Visualization</subject><ispartof>IEEE internet of things journal, 2024-11, Vol.11 (22), p.36736-36747</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-17cf03784caa998ea4d3fadea347e11e74e278ea24d3fcf7d3e103275bebc9ea3</cites><orcidid>0000-0002-9521-5084 ; 0000-0003-3603-3886 ; 0009-0001-3318-0429 ; 0000-0001-6880-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10597658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10597658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Wenqing</creatorcontrib><creatorcontrib>Wan, Yiyao</creatorcontrib><creatorcontrib>Wu, Guangyu</creatorcontrib><creatorcontrib>Li, Yihao</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Qihui</creatorcontrib><title>An RF-Visual Directional Fusion Framework for Precise UAV Positioning</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its performance is confined due to the small size of the target and its high susceptibility to disturbance caused by birds or other aircraft. To tackle this problem, a radio-frequency (RF)-visual directional fusion framework is proposed for precise UAV positioning. In the framework, radio signals are aligned with images by jointly calibrating the array antenna and camera. The spatial spectrum is extracted by an array antenna to concentrate on target areas within the image modal. Moreover, in order to improve the precision of joint calibration, a segmentation-based denoising method is proposed to remove the spectrum noise. Furthermore, a practical anti-UAV positioning platform is established, and two synchronized data sets, which include visual images and UAV RF signals, are collected on the platform. Experimental results demonstrate that our proposed framework improves positioning accuracy and robustness compared to the benchmark methods.</description><subject>Aircraft performance</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Autonomous aerial vehicles</subject><subject>Birds</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Image segmentation</subject><subject>Precise unmanned aerial vehicle (UAV) positioning</subject><subject>Radio frequency</subject><subject>Radio signals</subject><subject>radio-frequency (RF)-visual directional fusion framework</subject><subject>Real time operation</subject><subject>segmentation-based denoising method</subject><subject>Sensors</subject><subject>Unmanned aerial vehicles</subject><subject>Visual signals</subject><subject>Visualization</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9rwjAUxcPYYOL8AIM9BPZcl39t2sfi7OYQlKG-hpjejjhtXGIZ-_ZL0Qef7uHe37kcDkKPlIwpJcXLx2yxGjPCxJgLJpikN2jAOJOJyDJ2e6Xv0SiEHSEk2lJaZAM0LVv8WSUbGzq9x6_WgzlZ10ZddSEKXHl9gF_nv3HjPF7Guw2A1-UGL12wPWvbrwd01-h9gNFlDtG6mq4m78l88TablPPEUJmdEipNQ7jMhdG6KHLQouaNrkFzIYFSkAKYjGvW700jaw6UxOzpFramiNgQPZ__Hr376SCc1M51PqYNilOWkVyKXEaKninjXQgeGnX09qD9n6JE9YWpvjDVF6YuhUXP09ljAeCKTwuZpTn_B9TtZoA</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Xie, Wenqing</creator><creator>Wan, Yiyao</creator><creator>Wu, Guangyu</creator><creator>Li, Yihao</creator><creator>Zhou, Fuhui</creator><creator>Wu, Qihui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9521-5084</orcidid><orcidid>https://orcid.org/0000-0003-3603-3886</orcidid><orcidid>https://orcid.org/0009-0001-3318-0429</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid></search><sort><creationdate>20241115</creationdate><title>An RF-Visual Directional Fusion Framework for Precise UAV Positioning</title><author>Xie, Wenqing ; Wan, Yiyao ; Wu, Guangyu ; Li, Yihao ; Zhou, Fuhui ; Wu, Qihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-17cf03784caa998ea4d3fadea347e11e74e278ea24d3fcf7d3e103275bebc9ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft performance</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Autonomous aerial vehicles</topic><topic>Birds</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Image segmentation</topic><topic>Precise unmanned aerial vehicle (UAV) positioning</topic><topic>Radio frequency</topic><topic>Radio signals</topic><topic>radio-frequency (RF)-visual directional fusion framework</topic><topic>Real time operation</topic><topic>segmentation-based denoising method</topic><topic>Sensors</topic><topic>Unmanned aerial vehicles</topic><topic>Visual signals</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wenqing</creatorcontrib><creatorcontrib>Wan, Yiyao</creatorcontrib><creatorcontrib>Wu, Guangyu</creatorcontrib><creatorcontrib>Li, Yihao</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Qihui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Wenqing</au><au>Wan, Yiyao</au><au>Wu, Guangyu</au><au>Li, Yihao</au><au>Zhou, Fuhui</au><au>Wu, Qihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An RF-Visual Directional Fusion Framework for Precise UAV Positioning</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-11-15</date><risdate>2024</risdate><volume>11</volume><issue>22</issue><spage>36736</spage><epage>36747</epage><pages>36736-36747</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its performance is confined due to the small size of the target and its high susceptibility to disturbance caused by birds or other aircraft. To tackle this problem, a radio-frequency (RF)-visual directional fusion framework is proposed for precise UAV positioning. In the framework, radio signals are aligned with images by jointly calibrating the array antenna and camera. The spatial spectrum is extracted by an array antenna to concentrate on target areas within the image modal. Moreover, in order to improve the precision of joint calibration, a segmentation-based denoising method is proposed to remove the spectrum noise. Furthermore, a practical anti-UAV positioning platform is established, and two synchronized data sets, which include visual images and UAV RF signals, are collected on the platform. Experimental results demonstrate that our proposed framework improves positioning accuracy and robustness compared to the benchmark methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3424271</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9521-5084</orcidid><orcidid>https://orcid.org/0000-0003-3603-3886</orcidid><orcidid>https://orcid.org/0009-0001-3318-0429</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-11, Vol.11 (22), p.36736-36747
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10597658
source IEEE Electronic Library (IEL)
subjects Aircraft performance
Antenna arrays
Antennas
Autonomous aerial vehicles
Birds
Calibration
Cameras
Image segmentation
Precise unmanned aerial vehicle (UAV) positioning
Radio frequency
Radio signals
radio-frequency (RF)-visual directional fusion framework
Real time operation
segmentation-based denoising method
Sensors
Unmanned aerial vehicles
Visual signals
Visualization
title An RF-Visual Directional Fusion Framework for Precise UAV Positioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20RF-Visual%20Directional%20Fusion%20Framework%20for%20Precise%20UAV%20Positioning&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Xie,%20Wenqing&rft.date=2024-11-15&rft.volume=11&rft.issue=22&rft.spage=36736&rft.epage=36747&rft.pages=36736-36747&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3424271&rft_dat=%3Cproquest_RIE%3E3126087487%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126087487&rft_id=info:pmid/&rft_ieee_id=10597658&rfr_iscdi=true