An RF-Visual Directional Fusion Framework for Precise UAV Positioning
Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its perf...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-11, Vol.11 (22), p.36736-36747 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36747 |
---|---|
container_issue | 22 |
container_start_page | 36736 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Xie, Wenqing Wan, Yiyao Wu, Guangyu Li, Yihao Zhou, Fuhui Wu, Qihui |
description | Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its performance is confined due to the small size of the target and its high susceptibility to disturbance caused by birds or other aircraft. To tackle this problem, a radio-frequency (RF)-visual directional fusion framework is proposed for precise UAV positioning. In the framework, radio signals are aligned with images by jointly calibrating the array antenna and camera. The spatial spectrum is extracted by an array antenna to concentrate on target areas within the image modal. Moreover, in order to improve the precision of joint calibration, a segmentation-based denoising method is proposed to remove the spectrum noise. Furthermore, a practical anti-UAV positioning platform is established, and two synchronized data sets, which include visual images and UAV RF signals, are collected on the platform. Experimental results demonstrate that our proposed framework improves positioning accuracy and robustness compared to the benchmark methods. |
doi_str_mv | 10.1109/JIOT.2024.3424271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10597658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10597658</ieee_id><sourcerecordid>3126087487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-17cf03784caa998ea4d3fadea347e11e74e278ea24d3fcf7d3e103275bebc9ea3</originalsourceid><addsrcrecordid>eNpNkF9rwjAUxcPYYOL8AIM9BPZcl39t2sfi7OYQlKG-hpjejjhtXGIZ-_ZL0Qef7uHe37kcDkKPlIwpJcXLx2yxGjPCxJgLJpikN2jAOJOJyDJ2e6Xv0SiEHSEk2lJaZAM0LVv8WSUbGzq9x6_WgzlZ10ZddSEKXHl9gF_nv3HjPF7Guw2A1-UGL12wPWvbrwd01-h9gNFlDtG6mq4m78l88TablPPEUJmdEipNQ7jMhdG6KHLQouaNrkFzIYFSkAKYjGvW700jaw6UxOzpFramiNgQPZ__Hr376SCc1M51PqYNilOWkVyKXEaKninjXQgeGnX09qD9n6JE9YWpvjDVF6YuhUXP09ljAeCKTwuZpTn_B9TtZoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126087487</pqid></control><display><type>article</type><title>An RF-Visual Directional Fusion Framework for Precise UAV Positioning</title><source>IEEE Electronic Library (IEL)</source><creator>Xie, Wenqing ; Wan, Yiyao ; Wu, Guangyu ; Li, Yihao ; Zhou, Fuhui ; Wu, Qihui</creator><creatorcontrib>Xie, Wenqing ; Wan, Yiyao ; Wu, Guangyu ; Li, Yihao ; Zhou, Fuhui ; Wu, Qihui</creatorcontrib><description>Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its performance is confined due to the small size of the target and its high susceptibility to disturbance caused by birds or other aircraft. To tackle this problem, a radio-frequency (RF)-visual directional fusion framework is proposed for precise UAV positioning. In the framework, radio signals are aligned with images by jointly calibrating the array antenna and camera. The spatial spectrum is extracted by an array antenna to concentrate on target areas within the image modal. Moreover, in order to improve the precision of joint calibration, a segmentation-based denoising method is proposed to remove the spectrum noise. Furthermore, a practical anti-UAV positioning platform is established, and two synchronized data sets, which include visual images and UAV RF signals, are collected on the platform. Experimental results demonstrate that our proposed framework improves positioning accuracy and robustness compared to the benchmark methods.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3424271</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aircraft performance ; Antenna arrays ; Antennas ; Autonomous aerial vehicles ; Birds ; Calibration ; Cameras ; Image segmentation ; Precise unmanned aerial vehicle (UAV) positioning ; Radio frequency ; Radio signals ; radio-frequency (RF)-visual directional fusion framework ; Real time operation ; segmentation-based denoising method ; Sensors ; Unmanned aerial vehicles ; Visual signals ; Visualization</subject><ispartof>IEEE internet of things journal, 2024-11, Vol.11 (22), p.36736-36747</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-17cf03784caa998ea4d3fadea347e11e74e278ea24d3fcf7d3e103275bebc9ea3</cites><orcidid>0000-0002-9521-5084 ; 0000-0003-3603-3886 ; 0009-0001-3318-0429 ; 0000-0001-6880-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10597658$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10597658$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Wenqing</creatorcontrib><creatorcontrib>Wan, Yiyao</creatorcontrib><creatorcontrib>Wu, Guangyu</creatorcontrib><creatorcontrib>Li, Yihao</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Qihui</creatorcontrib><title>An RF-Visual Directional Fusion Framework for Precise UAV Positioning</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its performance is confined due to the small size of the target and its high susceptibility to disturbance caused by birds or other aircraft. To tackle this problem, a radio-frequency (RF)-visual directional fusion framework is proposed for precise UAV positioning. In the framework, radio signals are aligned with images by jointly calibrating the array antenna and camera. The spatial spectrum is extracted by an array antenna to concentrate on target areas within the image modal. Moreover, in order to improve the precision of joint calibration, a segmentation-based denoising method is proposed to remove the spectrum noise. Furthermore, a practical anti-UAV positioning platform is established, and two synchronized data sets, which include visual images and UAV RF signals, are collected on the platform. Experimental results demonstrate that our proposed framework improves positioning accuracy and robustness compared to the benchmark methods.</description><subject>Aircraft performance</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Autonomous aerial vehicles</subject><subject>Birds</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Image segmentation</subject><subject>Precise unmanned aerial vehicle (UAV) positioning</subject><subject>Radio frequency</subject><subject>Radio signals</subject><subject>radio-frequency (RF)-visual directional fusion framework</subject><subject>Real time operation</subject><subject>segmentation-based denoising method</subject><subject>Sensors</subject><subject>Unmanned aerial vehicles</subject><subject>Visual signals</subject><subject>Visualization</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9rwjAUxcPYYOL8AIM9BPZcl39t2sfi7OYQlKG-hpjejjhtXGIZ-_ZL0Qef7uHe37kcDkKPlIwpJcXLx2yxGjPCxJgLJpikN2jAOJOJyDJ2e6Xv0SiEHSEk2lJaZAM0LVv8WSUbGzq9x6_WgzlZ10ZddSEKXHl9gF_nv3HjPF7Guw2A1-UGL12wPWvbrwd01-h9gNFlDtG6mq4m78l88TablPPEUJmdEipNQ7jMhdG6KHLQouaNrkFzIYFSkAKYjGvW700jaw6UxOzpFramiNgQPZ__Hr376SCc1M51PqYNilOWkVyKXEaKninjXQgeGnX09qD9n6JE9YWpvjDVF6YuhUXP09ljAeCKTwuZpTn_B9TtZoA</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Xie, Wenqing</creator><creator>Wan, Yiyao</creator><creator>Wu, Guangyu</creator><creator>Li, Yihao</creator><creator>Zhou, Fuhui</creator><creator>Wu, Qihui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9521-5084</orcidid><orcidid>https://orcid.org/0000-0003-3603-3886</orcidid><orcidid>https://orcid.org/0009-0001-3318-0429</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid></search><sort><creationdate>20241115</creationdate><title>An RF-Visual Directional Fusion Framework for Precise UAV Positioning</title><author>Xie, Wenqing ; Wan, Yiyao ; Wu, Guangyu ; Li, Yihao ; Zhou, Fuhui ; Wu, Qihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-17cf03784caa998ea4d3fadea347e11e74e278ea24d3fcf7d3e103275bebc9ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft performance</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Autonomous aerial vehicles</topic><topic>Birds</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Image segmentation</topic><topic>Precise unmanned aerial vehicle (UAV) positioning</topic><topic>Radio frequency</topic><topic>Radio signals</topic><topic>radio-frequency (RF)-visual directional fusion framework</topic><topic>Real time operation</topic><topic>segmentation-based denoising method</topic><topic>Sensors</topic><topic>Unmanned aerial vehicles</topic><topic>Visual signals</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wenqing</creatorcontrib><creatorcontrib>Wan, Yiyao</creatorcontrib><creatorcontrib>Wu, Guangyu</creatorcontrib><creatorcontrib>Li, Yihao</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Qihui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Wenqing</au><au>Wan, Yiyao</au><au>Wu, Guangyu</au><au>Li, Yihao</au><au>Zhou, Fuhui</au><au>Wu, Qihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An RF-Visual Directional Fusion Framework for Precise UAV Positioning</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-11-15</date><risdate>2024</risdate><volume>11</volume><issue>22</issue><spage>36736</spage><epage>36747</epage><pages>36736-36747</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Anti-unmanned aerial vehicle (UAV) systems are crucial for preventing unauthorized individuals from exploiting UAVs for illegal activities, including surveillance and attacks. Precise real-time positioning of small UAVs is the premise of the effective operation of anti-UAV systems. However, its performance is confined due to the small size of the target and its high susceptibility to disturbance caused by birds or other aircraft. To tackle this problem, a radio-frequency (RF)-visual directional fusion framework is proposed for precise UAV positioning. In the framework, radio signals are aligned with images by jointly calibrating the array antenna and camera. The spatial spectrum is extracted by an array antenna to concentrate on target areas within the image modal. Moreover, in order to improve the precision of joint calibration, a segmentation-based denoising method is proposed to remove the spectrum noise. Furthermore, a practical anti-UAV positioning platform is established, and two synchronized data sets, which include visual images and UAV RF signals, are collected on the platform. Experimental results demonstrate that our proposed framework improves positioning accuracy and robustness compared to the benchmark methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3424271</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9521-5084</orcidid><orcidid>https://orcid.org/0000-0003-3603-3886</orcidid><orcidid>https://orcid.org/0009-0001-3318-0429</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-11, Vol.11 (22), p.36736-36747 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10597658 |
source | IEEE Electronic Library (IEL) |
subjects | Aircraft performance Antenna arrays Antennas Autonomous aerial vehicles Birds Calibration Cameras Image segmentation Precise unmanned aerial vehicle (UAV) positioning Radio frequency Radio signals radio-frequency (RF)-visual directional fusion framework Real time operation segmentation-based denoising method Sensors Unmanned aerial vehicles Visual signals Visualization |
title | An RF-Visual Directional Fusion Framework for Precise UAV Positioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20RF-Visual%20Directional%20Fusion%20Framework%20for%20Precise%20UAV%20Positioning&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Xie,%20Wenqing&rft.date=2024-11-15&rft.volume=11&rft.issue=22&rft.spage=36736&rft.epage=36747&rft.pages=36736-36747&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3424271&rft_dat=%3Cproquest_RIE%3E3126087487%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126087487&rft_id=info:pmid/&rft_ieee_id=10597658&rfr_iscdi=true |