Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement

Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11
Hauptverfasser: Yan, Yunhui, Tian, Hongkun, Song, Kechen, Li, Yuntian, Man, Yi, Tong, Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Yan, Yunhui
Tian, Hongkun
Song, Kechen
Li, Yuntian
Man, Yi
Tong, Ling
description Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception and operation. As a result, many studies have focused on reconstructing depth data by encoding and decoding RGB and depth information. However, current research faces two limitations: insufficiently addressing challenges posed by textureless transparent objects during the encoding-decoding process and inadequate emphasis on capturing shallow characteristics and cross-modal interaction of RGB-D bimodal data. To overcome these limitations, this study proposes a depth perception network based on orientation-aware guidance and texture enhancement for robots to perceive transparent objects. The backbone network incorporates an orientation-aware guidance module to integrate shallow RGB-D features, providing prior direction. In addition, this study designs a multibranch, multisensory field interactive texture nonlinear enhancement architecture, inspired by human vision, to tackle the challenges presented by textureless transparent objects. The proposed approach is extensively validated on both public datasets and industrial robotics platforms, demonstrating highly competitive performance.
doi_str_mv 10.1109/TIM.2024.3427782
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10597633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10597633</ieee_id><sourcerecordid>3084059650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-993371500b67fa7cc8376bee865112e274a6d59213c14f96988f83673153d0603</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxC0EEqWwMzBYYk6x4_hrLKWUSi1FKMyR47yoKW0SnESFjT8dp-3A9E6n392TDqFbSkaUEv0Qz5ejkITRiEWhlCo8QwPKuQy0EOE5GhBCVaAjLi7RVdNsCCFSRHKAfmNnyqY2DsoWr9IN2BY_Qd2u8Rs460VRlfgV2n3lPnFeOfxepVVbWLw0ZVF3W3MAHk0DGfZi5QpfdDCD8d634llXZKa0gE2Z4Ri-286b03LdezvPXqOL3GwbuDndIfp4nsaTl2Cxms0n40VgqeRtoDVjknJCUiFzI61VTIoUQAlOaQihjIzIuA4pszTKtdBK5YoJyShnGRGEDdH9sbd21VcHTZtsqs6V_mXCiIoI14L3FDlS1lVN4yBPalfsjPtJKEn6nRO_c9LvnJx29pG7Y6QAgH8411Iwxv4AXoF5mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084059650</pqid></control><display><type>article</type><title>Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Yunhui ; Tian, Hongkun ; Song, Kechen ; Li, Yuntian ; Man, Yi ; Tong, Ling</creator><creatorcontrib>Yan, Yunhui ; Tian, Hongkun ; Song, Kechen ; Li, Yuntian ; Man, Yi ; Tong, Ling</creatorcontrib><description>Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception and operation. As a result, many studies have focused on reconstructing depth data by encoding and decoding RGB and depth information. However, current research faces two limitations: insufficiently addressing challenges posed by textureless transparent objects during the encoding-decoding process and inadequate emphasis on capturing shallow characteristics and cross-modal interaction of RGB-D bimodal data. To overcome these limitations, this study proposes a depth perception network based on orientation-aware guidance and texture enhancement for robots to perceive transparent objects. The backbone network incorporates an orientation-aware guidance module to integrate shallow RGB-D features, providing prior direction. In addition, this study designs a multibranch, multisensory field interactive texture nonlinear enhancement architecture, inspired by human vision, to tackle the challenges presented by textureless transparent objects. The proposed approach is extensively validated on both public datasets and industrial robotics platforms, demonstrating highly competitive performance.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3427782</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Color imagery ; Computational modeling ; Computer architecture ; Depth perception ; Encoding-Decoding ; Image enhancement ; Image manipulation ; industrial robot grasping ; Industrial robots ; Orientation ; Robotics ; Robots ; Sensors ; Service robots ; Space perception ; Texture ; Three-dimensional displays ; transparent objects ; visual measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-993371500b67fa7cc8376bee865112e274a6d59213c14f96988f83673153d0603</cites><orcidid>0000-0003-2498-2873 ; 0009-0007-9565-9076 ; 0000-0002-2347-8862 ; 0000-0002-7636-3460 ; 0000-0002-3191-0600 ; 0000-0001-7121-2367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10597633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10597633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Yunhui</creatorcontrib><creatorcontrib>Tian, Hongkun</creatorcontrib><creatorcontrib>Song, Kechen</creatorcontrib><creatorcontrib>Li, Yuntian</creatorcontrib><creatorcontrib>Man, Yi</creatorcontrib><creatorcontrib>Tong, Ling</creatorcontrib><title>Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception and operation. As a result, many studies have focused on reconstructing depth data by encoding and decoding RGB and depth information. However, current research faces two limitations: insufficiently addressing challenges posed by textureless transparent objects during the encoding-decoding process and inadequate emphasis on capturing shallow characteristics and cross-modal interaction of RGB-D bimodal data. To overcome these limitations, this study proposes a depth perception network based on orientation-aware guidance and texture enhancement for robots to perceive transparent objects. The backbone network incorporates an orientation-aware guidance module to integrate shallow RGB-D features, providing prior direction. In addition, this study designs a multibranch, multisensory field interactive texture nonlinear enhancement architecture, inspired by human vision, to tackle the challenges presented by textureless transparent objects. The proposed approach is extensively validated on both public datasets and industrial robotics platforms, demonstrating highly competitive performance.</description><subject>Accuracy</subject><subject>Color imagery</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Depth perception</subject><subject>Encoding-Decoding</subject><subject>Image enhancement</subject><subject>Image manipulation</subject><subject>industrial robot grasping</subject><subject>Industrial robots</subject><subject>Orientation</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Service robots</subject><subject>Space perception</subject><subject>Texture</subject><subject>Three-dimensional displays</subject><subject>transparent objects</subject><subject>visual measurement</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAUxC0EEqWwMzBYYk6x4_hrLKWUSi1FKMyR47yoKW0SnESFjT8dp-3A9E6n392TDqFbSkaUEv0Qz5ejkITRiEWhlCo8QwPKuQy0EOE5GhBCVaAjLi7RVdNsCCFSRHKAfmNnyqY2DsoWr9IN2BY_Qd2u8Rs460VRlfgV2n3lPnFeOfxepVVbWLw0ZVF3W3MAHk0DGfZi5QpfdDCD8d634llXZKa0gE2Z4Ri-286b03LdezvPXqOL3GwbuDndIfp4nsaTl2Cxms0n40VgqeRtoDVjknJCUiFzI61VTIoUQAlOaQihjIzIuA4pszTKtdBK5YoJyShnGRGEDdH9sbd21VcHTZtsqs6V_mXCiIoI14L3FDlS1lVN4yBPalfsjPtJKEn6nRO_c9LvnJx29pG7Y6QAgH8411Iwxv4AXoF5mQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yan, Yunhui</creator><creator>Tian, Hongkun</creator><creator>Song, Kechen</creator><creator>Li, Yuntian</creator><creator>Man, Yi</creator><creator>Tong, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2498-2873</orcidid><orcidid>https://orcid.org/0009-0007-9565-9076</orcidid><orcidid>https://orcid.org/0000-0002-2347-8862</orcidid><orcidid>https://orcid.org/0000-0002-7636-3460</orcidid><orcidid>https://orcid.org/0000-0002-3191-0600</orcidid><orcidid>https://orcid.org/0000-0001-7121-2367</orcidid></search><sort><creationdate>2024</creationdate><title>Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement</title><author>Yan, Yunhui ; Tian, Hongkun ; Song, Kechen ; Li, Yuntian ; Man, Yi ; Tong, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-993371500b67fa7cc8376bee865112e274a6d59213c14f96988f83673153d0603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Color imagery</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Depth perception</topic><topic>Encoding-Decoding</topic><topic>Image enhancement</topic><topic>Image manipulation</topic><topic>industrial robot grasping</topic><topic>Industrial robots</topic><topic>Orientation</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Service robots</topic><topic>Space perception</topic><topic>Texture</topic><topic>Three-dimensional displays</topic><topic>transparent objects</topic><topic>visual measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Yunhui</creatorcontrib><creatorcontrib>Tian, Hongkun</creatorcontrib><creatorcontrib>Song, Kechen</creatorcontrib><creatorcontrib>Li, Yuntian</creatorcontrib><creatorcontrib>Man, Yi</creatorcontrib><creatorcontrib>Tong, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Yunhui</au><au>Tian, Hongkun</au><au>Song, Kechen</au><au>Li, Yuntian</au><au>Man, Yi</au><au>Tong, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception and operation. As a result, many studies have focused on reconstructing depth data by encoding and decoding RGB and depth information. However, current research faces two limitations: insufficiently addressing challenges posed by textureless transparent objects during the encoding-decoding process and inadequate emphasis on capturing shallow characteristics and cross-modal interaction of RGB-D bimodal data. To overcome these limitations, this study proposes a depth perception network based on orientation-aware guidance and texture enhancement for robots to perceive transparent objects. The backbone network incorporates an orientation-aware guidance module to integrate shallow RGB-D features, providing prior direction. In addition, this study designs a multibranch, multisensory field interactive texture nonlinear enhancement architecture, inspired by human vision, to tackle the challenges presented by textureless transparent objects. The proposed approach is extensively validated on both public datasets and industrial robotics platforms, demonstrating highly competitive performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3427782</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2498-2873</orcidid><orcidid>https://orcid.org/0009-0007-9565-9076</orcidid><orcidid>https://orcid.org/0000-0002-2347-8862</orcidid><orcidid>https://orcid.org/0000-0002-7636-3460</orcidid><orcidid>https://orcid.org/0000-0002-3191-0600</orcidid><orcidid>https://orcid.org/0000-0001-7121-2367</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_10597633
source IEEE Electronic Library (IEL)
subjects Accuracy
Color imagery
Computational modeling
Computer architecture
Depth perception
Encoding-Decoding
Image enhancement
Image manipulation
industrial robot grasping
Industrial robots
Orientation
Robotics
Robots
Sensors
Service robots
Space perception
Texture
Three-dimensional displays
transparent objects
visual measurement
title Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transparent%20Object%20Depth%20Perception%20Network%20for%20Robotic%20Manipulation%20Based%20on%20Orientation-Aware%20Guidance%20and%20Texture%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yan,%20Yunhui&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3427782&rft_dat=%3Cproquest_RIE%3E3084059650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084059650&rft_id=info:pmid/&rft_ieee_id=10597633&rfr_iscdi=true