Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement
Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 73 |
creator | Yan, Yunhui Tian, Hongkun Song, Kechen Li, Yuntian Man, Yi Tong, Ling |
description | Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception and operation. As a result, many studies have focused on reconstructing depth data by encoding and decoding RGB and depth information. However, current research faces two limitations: insufficiently addressing challenges posed by textureless transparent objects during the encoding-decoding process and inadequate emphasis on capturing shallow characteristics and cross-modal interaction of RGB-D bimodal data. To overcome these limitations, this study proposes a depth perception network based on orientation-aware guidance and texture enhancement for robots to perceive transparent objects. The backbone network incorporates an orientation-aware guidance module to integrate shallow RGB-D features, providing prior direction. In addition, this study designs a multibranch, multisensory field interactive texture nonlinear enhancement architecture, inspired by human vision, to tackle the challenges presented by textureless transparent objects. The proposed approach is extensively validated on both public datasets and industrial robotics platforms, demonstrating highly competitive performance. |
doi_str_mv | 10.1109/TIM.2024.3427782 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10597633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10597633</ieee_id><sourcerecordid>3084059650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-993371500b67fa7cc8376bee865112e274a6d59213c14f96988f83673153d0603</originalsourceid><addsrcrecordid>eNpNkL1PwzAUxC0EEqWwMzBYYk6x4_hrLKWUSi1FKMyR47yoKW0SnESFjT8dp-3A9E6n392TDqFbSkaUEv0Qz5ejkITRiEWhlCo8QwPKuQy0EOE5GhBCVaAjLi7RVdNsCCFSRHKAfmNnyqY2DsoWr9IN2BY_Qd2u8Rs460VRlfgV2n3lPnFeOfxepVVbWLw0ZVF3W3MAHk0DGfZi5QpfdDCD8d634llXZKa0gE2Z4Ri-286b03LdezvPXqOL3GwbuDndIfp4nsaTl2Cxms0n40VgqeRtoDVjknJCUiFzI61VTIoUQAlOaQihjIzIuA4pszTKtdBK5YoJyShnGRGEDdH9sbd21VcHTZtsqs6V_mXCiIoI14L3FDlS1lVN4yBPalfsjPtJKEn6nRO_c9LvnJx29pG7Y6QAgH8411Iwxv4AXoF5mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084059650</pqid></control><display><type>article</type><title>Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement</title><source>IEEE Electronic Library (IEL)</source><creator>Yan, Yunhui ; Tian, Hongkun ; Song, Kechen ; Li, Yuntian ; Man, Yi ; Tong, Ling</creator><creatorcontrib>Yan, Yunhui ; Tian, Hongkun ; Song, Kechen ; Li, Yuntian ; Man, Yi ; Tong, Ling</creatorcontrib><description>Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception and operation. As a result, many studies have focused on reconstructing depth data by encoding and decoding RGB and depth information. However, current research faces two limitations: insufficiently addressing challenges posed by textureless transparent objects during the encoding-decoding process and inadequate emphasis on capturing shallow characteristics and cross-modal interaction of RGB-D bimodal data. To overcome these limitations, this study proposes a depth perception network based on orientation-aware guidance and texture enhancement for robots to perceive transparent objects. The backbone network incorporates an orientation-aware guidance module to integrate shallow RGB-D features, providing prior direction. In addition, this study designs a multibranch, multisensory field interactive texture nonlinear enhancement architecture, inspired by human vision, to tackle the challenges presented by textureless transparent objects. The proposed approach is extensively validated on both public datasets and industrial robotics platforms, demonstrating highly competitive performance.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2024.3427782</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Color imagery ; Computational modeling ; Computer architecture ; Depth perception ; Encoding-Decoding ; Image enhancement ; Image manipulation ; industrial robot grasping ; Industrial robots ; Orientation ; Robotics ; Robots ; Sensors ; Service robots ; Space perception ; Texture ; Three-dimensional displays ; transparent objects ; visual measurement</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-993371500b67fa7cc8376bee865112e274a6d59213c14f96988f83673153d0603</cites><orcidid>0000-0003-2498-2873 ; 0009-0007-9565-9076 ; 0000-0002-2347-8862 ; 0000-0002-7636-3460 ; 0000-0002-3191-0600 ; 0000-0001-7121-2367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10597633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10597633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yan, Yunhui</creatorcontrib><creatorcontrib>Tian, Hongkun</creatorcontrib><creatorcontrib>Song, Kechen</creatorcontrib><creatorcontrib>Li, Yuntian</creatorcontrib><creatorcontrib>Man, Yi</creatorcontrib><creatorcontrib>Tong, Ling</creatorcontrib><title>Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception and operation. As a result, many studies have focused on reconstructing depth data by encoding and decoding RGB and depth information. However, current research faces two limitations: insufficiently addressing challenges posed by textureless transparent objects during the encoding-decoding process and inadequate emphasis on capturing shallow characteristics and cross-modal interaction of RGB-D bimodal data. To overcome these limitations, this study proposes a depth perception network based on orientation-aware guidance and texture enhancement for robots to perceive transparent objects. The backbone network incorporates an orientation-aware guidance module to integrate shallow RGB-D features, providing prior direction. In addition, this study designs a multibranch, multisensory field interactive texture nonlinear enhancement architecture, inspired by human vision, to tackle the challenges presented by textureless transparent objects. The proposed approach is extensively validated on both public datasets and industrial robotics platforms, demonstrating highly competitive performance.</description><subject>Accuracy</subject><subject>Color imagery</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Depth perception</subject><subject>Encoding-Decoding</subject><subject>Image enhancement</subject><subject>Image manipulation</subject><subject>industrial robot grasping</subject><subject>Industrial robots</subject><subject>Orientation</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Service robots</subject><subject>Space perception</subject><subject>Texture</subject><subject>Three-dimensional displays</subject><subject>transparent objects</subject><subject>visual measurement</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAUxC0EEqWwMzBYYk6x4_hrLKWUSi1FKMyR47yoKW0SnESFjT8dp-3A9E6n392TDqFbSkaUEv0Qz5ejkITRiEWhlCo8QwPKuQy0EOE5GhBCVaAjLi7RVdNsCCFSRHKAfmNnyqY2DsoWr9IN2BY_Qd2u8Rs460VRlfgV2n3lPnFeOfxepVVbWLw0ZVF3W3MAHk0DGfZi5QpfdDCD8d634llXZKa0gE2Z4Ri-286b03LdezvPXqOL3GwbuDndIfp4nsaTl2Cxms0n40VgqeRtoDVjknJCUiFzI61VTIoUQAlOaQihjIzIuA4pszTKtdBK5YoJyShnGRGEDdH9sbd21VcHTZtsqs6V_mXCiIoI14L3FDlS1lVN4yBPalfsjPtJKEn6nRO_c9LvnJx29pG7Y6QAgH8411Iwxv4AXoF5mQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Yan, Yunhui</creator><creator>Tian, Hongkun</creator><creator>Song, Kechen</creator><creator>Li, Yuntian</creator><creator>Man, Yi</creator><creator>Tong, Ling</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2498-2873</orcidid><orcidid>https://orcid.org/0009-0007-9565-9076</orcidid><orcidid>https://orcid.org/0000-0002-2347-8862</orcidid><orcidid>https://orcid.org/0000-0002-7636-3460</orcidid><orcidid>https://orcid.org/0000-0002-3191-0600</orcidid><orcidid>https://orcid.org/0000-0001-7121-2367</orcidid></search><sort><creationdate>2024</creationdate><title>Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement</title><author>Yan, Yunhui ; Tian, Hongkun ; Song, Kechen ; Li, Yuntian ; Man, Yi ; Tong, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-993371500b67fa7cc8376bee865112e274a6d59213c14f96988f83673153d0603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Color imagery</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Depth perception</topic><topic>Encoding-Decoding</topic><topic>Image enhancement</topic><topic>Image manipulation</topic><topic>industrial robot grasping</topic><topic>Industrial robots</topic><topic>Orientation</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Service robots</topic><topic>Space perception</topic><topic>Texture</topic><topic>Three-dimensional displays</topic><topic>transparent objects</topic><topic>visual measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Yunhui</creatorcontrib><creatorcontrib>Tian, Hongkun</creatorcontrib><creatorcontrib>Song, Kechen</creatorcontrib><creatorcontrib>Li, Yuntian</creatorcontrib><creatorcontrib>Man, Yi</creatorcontrib><creatorcontrib>Tong, Ling</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Yunhui</au><au>Tian, Hongkun</au><au>Song, Kechen</au><au>Li, Yuntian</au><au>Man, Yi</au><au>Tong, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Industrial robots frequently encounter transparent objects in their work environments. Unlike conventional objects, transparent objects often lack distinct texture features in RGB images and result in incomplete and inaccurate depth images. This presents a significant challenge to robotic perception and operation. As a result, many studies have focused on reconstructing depth data by encoding and decoding RGB and depth information. However, current research faces two limitations: insufficiently addressing challenges posed by textureless transparent objects during the encoding-decoding process and inadequate emphasis on capturing shallow characteristics and cross-modal interaction of RGB-D bimodal data. To overcome these limitations, this study proposes a depth perception network based on orientation-aware guidance and texture enhancement for robots to perceive transparent objects. The backbone network incorporates an orientation-aware guidance module to integrate shallow RGB-D features, providing prior direction. In addition, this study designs a multibranch, multisensory field interactive texture nonlinear enhancement architecture, inspired by human vision, to tackle the challenges presented by textureless transparent objects. The proposed approach is extensively validated on both public datasets and industrial robotics platforms, demonstrating highly competitive performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2024.3427782</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2498-2873</orcidid><orcidid>https://orcid.org/0009-0007-9565-9076</orcidid><orcidid>https://orcid.org/0000-0002-2347-8862</orcidid><orcidid>https://orcid.org/0000-0002-7636-3460</orcidid><orcidid>https://orcid.org/0000-0002-3191-0600</orcidid><orcidid>https://orcid.org/0000-0001-7121-2367</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2024, Vol.73, p.1-11 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_10597633 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Color imagery Computational modeling Computer architecture Depth perception Encoding-Decoding Image enhancement Image manipulation industrial robot grasping Industrial robots Orientation Robotics Robots Sensors Service robots Space perception Texture Three-dimensional displays transparent objects visual measurement |
title | Transparent Object Depth Perception Network for Robotic Manipulation Based on Orientation-Aware Guidance and Texture Enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transparent%20Object%20Depth%20Perception%20Network%20for%20Robotic%20Manipulation%20Based%20on%20Orientation-Aware%20Guidance%20and%20Texture%20Enhancement&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yan,%20Yunhui&rft.date=2024&rft.volume=73&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2024.3427782&rft_dat=%3Cproquest_RIE%3E3084059650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084059650&rft_id=info:pmid/&rft_ieee_id=10597633&rfr_iscdi=true |