Structure-Preserved and Weakly Redundant Band Selection for Hyperspectral Imagery

In recent years, sparse self-representation has achieved remarkable success in hyperspectral band selection. However, the traditional sparse self-representation-based band selection methods tend to neglect the spatial distribution differences and spectral redundancy between heterogeneous regions. Co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.12490-12504
Hauptverfasser: Fu, Baijia, Sun, Xudong, Cui, Chuanyu, Zhang, Jiahua, Shang, Xiaodi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12504
container_issue
container_start_page 12490
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 17
creator Fu, Baijia
Sun, Xudong
Cui, Chuanyu
Zhang, Jiahua
Shang, Xiaodi
description In recent years, sparse self-representation has achieved remarkable success in hyperspectral band selection. However, the traditional sparse self-representation-based band selection methods tend to neglect the spatial distribution differences and spectral redundancy between heterogeneous regions. Consequently, the uniform band subset obtained cannot accurately express the key features of various region-specific objects. In this context, this article proposes the structure-preserved and weakly redundant (SPWR) band selection method for hyperspectral imagery (HSI). Initially, to preserve the spatial structure of HSI, heterogeneous regions are generated by superpixel segmentation. This process simulates the actual distribution of ground objects and captures the spectral feature differences from heterogeneous regions, thus adapting the sparse self-representation to diverse land cover types. Subsequently, given that the different objects between heterogeneous regions have different sensitive bands, a series of region-specific multimetric hypergraphs are constructed to more accurately express the multivariate adjacencies between bands for each region. Significantly, a new spectral similarity measure that integrates both the spectral distance and physical distance is elaborately utilized to group bands into various hypergraphs. Finally, a consensus matrix is designed to fuse multiple coefficient matrices carrying the local spatial-spectral information of HSI, thereby selecting the subset of bands for a unified characterization of HSI and achieving the complementarity of multiple regions. Extensive comparison experiments on four real-world datasets demonstrate that the proposed method SPWR can efficiently select representative bands and outperforms other comparison methods.
doi_str_mv 10.1109/JSTARS.2024.3425906
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10592298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10592298</ieee_id><doaj_id>oai_doaj_org_article_a59d5007c8b5463eb6d62007d0c4030e</doaj_id><sourcerecordid>3086424484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-4b1ca850f8f156311820b971169182dc6e77c7ef41bfb564c5c91a156ab3c6883</originalsourceid><addsrcrecordid>eNpNkVtLxDAQhYMouF5-gT4UfO6aya3Jo4qXFUHdXfExpMlUutZ2TVth_71dK-LTZA7nnAl8hJwAnQJQc36_WF7MF1NGmZhywaShaodMGEhIQXK5SyZguElBULFPDtp2RalimeET8rzoYu-7PmL6FLHF-IUhcXVIXtG9V5tkjqGvg6u75HKrLrBC35VNnRRNTO42a4ztelCiq5LZh3vDuDkie4WrWjz-nYfk5eZ6eXWXPjzezq4uHlLPQXSpyME7LWmhC5CKA2hGc5MBKDM8g1eYZT7DQkBe5FIJL70BN1hdzr3Smh-S2dgbGrey61h-uLixjSvtj9DEN-tiV_oKrZMmSEozr3MpFMdcBcWGPVAvKKc4dJ2NXevYfPbYdnbV9LEevm851UowIbQYXHx0-di0bcTi7ypQu-VgRw52y8H-chhSp2OqRMR_CWkYM5p_Az4Hg1k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086424484</pqid></control><display><type>article</type><title>Structure-Preserved and Weakly Redundant Band Selection for Hyperspectral Imagery</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fu, Baijia ; Sun, Xudong ; Cui, Chuanyu ; Zhang, Jiahua ; Shang, Xiaodi</creator><creatorcontrib>Fu, Baijia ; Sun, Xudong ; Cui, Chuanyu ; Zhang, Jiahua ; Shang, Xiaodi</creatorcontrib><description>In recent years, sparse self-representation has achieved remarkable success in hyperspectral band selection. However, the traditional sparse self-representation-based band selection methods tend to neglect the spatial distribution differences and spectral redundancy between heterogeneous regions. Consequently, the uniform band subset obtained cannot accurately express the key features of various region-specific objects. In this context, this article proposes the structure-preserved and weakly redundant (SPWR) band selection method for hyperspectral imagery (HSI). Initially, to preserve the spatial structure of HSI, heterogeneous regions are generated by superpixel segmentation. This process simulates the actual distribution of ground objects and captures the spectral feature differences from heterogeneous regions, thus adapting the sparse self-representation to diverse land cover types. Subsequently, given that the different objects between heterogeneous regions have different sensitive bands, a series of region-specific multimetric hypergraphs are constructed to more accurately express the multivariate adjacencies between bands for each region. Significantly, a new spectral similarity measure that integrates both the spectral distance and physical distance is elaborately utilized to group bands into various hypergraphs. Finally, a consensus matrix is designed to fuse multiple coefficient matrices carrying the local spatial-spectral information of HSI, thereby selecting the subset of bands for a unified characterization of HSI and achieving the complementarity of multiple regions. Extensive comparison experiments on four real-world datasets demonstrate that the proposed method SPWR can efficiently select representative bands and outperforms other comparison methods.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3425906</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Band spectra ; Banded structure ; Complementarity ; Data models ; Distance ; Graph theory ; Graphs ; Hyperspectral imaging ; Image processing ; Image segmentation ; Imagery ; Information processing ; Land cover ; Neglect syndromes ; Optimization ; Redundancy ; Region-specific multimetric hypergraph ; Regions ; Representations ; Sparse matrices ; sparse self-representation ; Spatial distribution ; spatial structure ; Sun ; unsupervised band selection ; Vectors ; weakly redundancy</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.12490-12504</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-4b1ca850f8f156311820b971169182dc6e77c7ef41bfb564c5c91a156ab3c6883</cites><orcidid>0000-0002-5870-6343 ; 0000-0002-0133-8447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Fu, Baijia</creatorcontrib><creatorcontrib>Sun, Xudong</creatorcontrib><creatorcontrib>Cui, Chuanyu</creatorcontrib><creatorcontrib>Zhang, Jiahua</creatorcontrib><creatorcontrib>Shang, Xiaodi</creatorcontrib><title>Structure-Preserved and Weakly Redundant Band Selection for Hyperspectral Imagery</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In recent years, sparse self-representation has achieved remarkable success in hyperspectral band selection. However, the traditional sparse self-representation-based band selection methods tend to neglect the spatial distribution differences and spectral redundancy between heterogeneous regions. Consequently, the uniform band subset obtained cannot accurately express the key features of various region-specific objects. In this context, this article proposes the structure-preserved and weakly redundant (SPWR) band selection method for hyperspectral imagery (HSI). Initially, to preserve the spatial structure of HSI, heterogeneous regions are generated by superpixel segmentation. This process simulates the actual distribution of ground objects and captures the spectral feature differences from heterogeneous regions, thus adapting the sparse self-representation to diverse land cover types. Subsequently, given that the different objects between heterogeneous regions have different sensitive bands, a series of region-specific multimetric hypergraphs are constructed to more accurately express the multivariate adjacencies between bands for each region. Significantly, a new spectral similarity measure that integrates both the spectral distance and physical distance is elaborately utilized to group bands into various hypergraphs. Finally, a consensus matrix is designed to fuse multiple coefficient matrices carrying the local spatial-spectral information of HSI, thereby selecting the subset of bands for a unified characterization of HSI and achieving the complementarity of multiple regions. Extensive comparison experiments on four real-world datasets demonstrate that the proposed method SPWR can efficiently select representative bands and outperforms other comparison methods.</description><subject>Band spectra</subject><subject>Banded structure</subject><subject>Complementarity</subject><subject>Data models</subject><subject>Distance</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Imagery</subject><subject>Information processing</subject><subject>Land cover</subject><subject>Neglect syndromes</subject><subject>Optimization</subject><subject>Redundancy</subject><subject>Region-specific multimetric hypergraph</subject><subject>Regions</subject><subject>Representations</subject><subject>Sparse matrices</subject><subject>sparse self-representation</subject><subject>Spatial distribution</subject><subject>spatial structure</subject><subject>Sun</subject><subject>unsupervised band selection</subject><subject>Vectors</subject><subject>weakly redundancy</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLxDAQhYMouF5-gT4UfO6aya3Jo4qXFUHdXfExpMlUutZ2TVth_71dK-LTZA7nnAl8hJwAnQJQc36_WF7MF1NGmZhywaShaodMGEhIQXK5SyZguElBULFPDtp2RalimeET8rzoYu-7PmL6FLHF-IUhcXVIXtG9V5tkjqGvg6u75HKrLrBC35VNnRRNTO42a4ztelCiq5LZh3vDuDkie4WrWjz-nYfk5eZ6eXWXPjzezq4uHlLPQXSpyME7LWmhC5CKA2hGc5MBKDM8g1eYZT7DQkBe5FIJL70BN1hdzr3Smh-S2dgbGrey61h-uLixjSvtj9DEN-tiV_oKrZMmSEozr3MpFMdcBcWGPVAvKKc4dJ2NXevYfPbYdnbV9LEevm851UowIbQYXHx0-di0bcTi7ypQu-VgRw52y8H-chhSp2OqRMR_CWkYM5p_Az4Hg1k</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Fu, Baijia</creator><creator>Sun, Xudong</creator><creator>Cui, Chuanyu</creator><creator>Zhang, Jiahua</creator><creator>Shang, Xiaodi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5870-6343</orcidid><orcidid>https://orcid.org/0000-0002-0133-8447</orcidid></search><sort><creationdate>2024</creationdate><title>Structure-Preserved and Weakly Redundant Band Selection for Hyperspectral Imagery</title><author>Fu, Baijia ; Sun, Xudong ; Cui, Chuanyu ; Zhang, Jiahua ; Shang, Xiaodi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-4b1ca850f8f156311820b971169182dc6e77c7ef41bfb564c5c91a156ab3c6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band spectra</topic><topic>Banded structure</topic><topic>Complementarity</topic><topic>Data models</topic><topic>Distance</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Imagery</topic><topic>Information processing</topic><topic>Land cover</topic><topic>Neglect syndromes</topic><topic>Optimization</topic><topic>Redundancy</topic><topic>Region-specific multimetric hypergraph</topic><topic>Regions</topic><topic>Representations</topic><topic>Sparse matrices</topic><topic>sparse self-representation</topic><topic>Spatial distribution</topic><topic>spatial structure</topic><topic>Sun</topic><topic>unsupervised band selection</topic><topic>Vectors</topic><topic>weakly redundancy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Baijia</creatorcontrib><creatorcontrib>Sun, Xudong</creatorcontrib><creatorcontrib>Cui, Chuanyu</creatorcontrib><creatorcontrib>Zhang, Jiahua</creatorcontrib><creatorcontrib>Shang, Xiaodi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Baijia</au><au>Sun, Xudong</au><au>Cui, Chuanyu</au><au>Zhang, Jiahua</au><au>Shang, Xiaodi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-Preserved and Weakly Redundant Band Selection for Hyperspectral Imagery</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>12490</spage><epage>12504</epage><pages>12490-12504</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In recent years, sparse self-representation has achieved remarkable success in hyperspectral band selection. However, the traditional sparse self-representation-based band selection methods tend to neglect the spatial distribution differences and spectral redundancy between heterogeneous regions. Consequently, the uniform band subset obtained cannot accurately express the key features of various region-specific objects. In this context, this article proposes the structure-preserved and weakly redundant (SPWR) band selection method for hyperspectral imagery (HSI). Initially, to preserve the spatial structure of HSI, heterogeneous regions are generated by superpixel segmentation. This process simulates the actual distribution of ground objects and captures the spectral feature differences from heterogeneous regions, thus adapting the sparse self-representation to diverse land cover types. Subsequently, given that the different objects between heterogeneous regions have different sensitive bands, a series of region-specific multimetric hypergraphs are constructed to more accurately express the multivariate adjacencies between bands for each region. Significantly, a new spectral similarity measure that integrates both the spectral distance and physical distance is elaborately utilized to group bands into various hypergraphs. Finally, a consensus matrix is designed to fuse multiple coefficient matrices carrying the local spatial-spectral information of HSI, thereby selecting the subset of bands for a unified characterization of HSI and achieving the complementarity of multiple regions. Extensive comparison experiments on four real-world datasets demonstrate that the proposed method SPWR can efficiently select representative bands and outperforms other comparison methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3425906</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5870-6343</orcidid><orcidid>https://orcid.org/0000-0002-0133-8447</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.12490-12504
issn 1939-1404
2151-1535
language eng
recordid cdi_ieee_primary_10592298
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Band spectra
Banded structure
Complementarity
Data models
Distance
Graph theory
Graphs
Hyperspectral imaging
Image processing
Image segmentation
Imagery
Information processing
Land cover
Neglect syndromes
Optimization
Redundancy
Region-specific multimetric hypergraph
Regions
Representations
Sparse matrices
sparse self-representation
Spatial distribution
spatial structure
Sun
unsupervised band selection
Vectors
weakly redundancy
title Structure-Preserved and Weakly Redundant Band Selection for Hyperspectral Imagery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-Preserved%20and%20Weakly%20Redundant%20Band%20Selection%20for%20Hyperspectral%20Imagery&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Fu,%20Baijia&rft.date=2024&rft.volume=17&rft.spage=12490&rft.epage=12504&rft.pages=12490-12504&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3425906&rft_dat=%3Cproquest_ieee_%3E3086424484%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086424484&rft_id=info:pmid/&rft_ieee_id=10592298&rft_doaj_id=oai_doaj_org_article_a59d5007c8b5463eb6d62007d0c4030e&rfr_iscdi=true