Permanent Magnet Biased Inductors-An Overview
This article provides a comprehensive overview of the state of the art in the field of permanent magnet biased inductors, (PMBIs). The theoretical benefits of PMBIs, operating in DC applications, were identified decades ago, in the late 1950's. Compared with a non-biased inductor, a 100% linear...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of power electronics 2024, Vol.5, p.1309-1327 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1327 |
---|---|
container_issue | |
container_start_page | 1309 |
container_title | IEEE open journal of power electronics |
container_volume | 5 |
creator | Aguilar, Andres Revilla Munk-Nielsen, Stig Bendixen, Flemming Buus Ouyang, Ziwei Duffy, Maeve Zhao, Hongbo |
description | This article provides a comprehensive overview of the state of the art in the field of permanent magnet biased inductors, (PMBIs). The theoretical benefits of PMBIs, operating in DC applications, were identified decades ago, in the late 1950's. Compared with a non-biased inductor, a 100% linear biased PMBI, can achieve the same inductance and saturation current, while requiring only half of the core's cross-sectional area or half the number of turns. In practicality, achieving 100% biasing without introducing additional losses, or detrimental conditions for the permanent magnet's lifetime, becomes an important challenge and the development and achievements of PMBIs have been evolving until present days. Therefore, this overview paper, first introduces the basic background knowledge required for the development of PMBIs, including an overview of the design benefits of biasing, the possible design strategies, additional benefits and possibilities of over-biasing, and a brief introduction to permanent magnets, PMs. The historical evolution of the different biasing techniques, and the employed core and PM topologies, are analyzed and evaluated. The different physical prototype implementations found in the literature, and their operating characteristics, achievements, and limitations, are compiled and evaluated. Finally, the present challenges of PMBI implementation, and the future perspectives towards optimized development are summarized. |
doi_str_mv | 10.1109/OJPEL.2024.3425605 |
format | Article |
fullrecord | <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10591423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10591423</ieee_id><doaj_id>oai_doaj_org_article_c1cec2eec61d468f817f2cb5095a4f34</doaj_id><sourcerecordid>oai_doaj_org_article_c1cec2eec61d468f817f2cb5095a4f34</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-5e645aacde784297889c3a4c62546fe441f9382c3b21c6c1a0b8a95d7f3d922c3</originalsourceid><addsrcrecordid>eNpNkM1Kw0AURgdRsNS-gLjIC6TOnb9klrVUrVTSha6H6c2dktImMokV3970B-nqXj44Z3EYuwc-BuD2sXhbzhZjwYUaSyW04fqKDYRRKgUJ6vriv2Wjtt1wzoUG6IcBS5cUd76mukve_bqmLnmqfEtlMq_Lb-ya2KaTOin2FPcV_dyxm-C3LY3Od8g-n2cf09d0UbzMp5NFikLbLtVklPYeS8pyJWyW5xalV2iEViaQUhCszAXKlQA0CJ6vcm91mQVZWtHvQzY_ecvGb9xXrHY-_rrGV-44NHHtfOwq3JJDQEJBhAZKZfKQQxYErjS32qsgVe8SJxfGpm0jhX8fcHfo54793KGfO_froYcTVBHRBaAtKCHlHzXLaq4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Permanent Magnet Biased Inductors-An Overview</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aguilar, Andres Revilla ; Munk-Nielsen, Stig ; Bendixen, Flemming Buus ; Ouyang, Ziwei ; Duffy, Maeve ; Zhao, Hongbo</creator><creatorcontrib>Aguilar, Andres Revilla ; Munk-Nielsen, Stig ; Bendixen, Flemming Buus ; Ouyang, Ziwei ; Duffy, Maeve ; Zhao, Hongbo</creatorcontrib><description>This article provides a comprehensive overview of the state of the art in the field of permanent magnet biased inductors, (PMBIs). The theoretical benefits of PMBIs, operating in DC applications, were identified decades ago, in the late 1950's. Compared with a non-biased inductor, a 100% linear biased PMBI, can achieve the same inductance and saturation current, while requiring only half of the core's cross-sectional area or half the number of turns. In practicality, achieving 100% biasing without introducing additional losses, or detrimental conditions for the permanent magnet's lifetime, becomes an important challenge and the development and achievements of PMBIs have been evolving until present days. Therefore, this overview paper, first introduces the basic background knowledge required for the development of PMBIs, including an overview of the design benefits of biasing, the possible design strategies, additional benefits and possibilities of over-biasing, and a brief introduction to permanent magnets, PMs. The historical evolution of the different biasing techniques, and the employed core and PM topologies, are analyzed and evaluated. The different physical prototype implementations found in the literature, and their operating characteristics, achievements, and limitations, are compiled and evaluated. Finally, the present challenges of PMBI implementation, and the future perspectives towards optimized development are summarized.</description><identifier>ISSN: 2644-1314</identifier><identifier>EISSN: 2644-1314</identifier><identifier>DOI: 10.1109/OJPEL.2024.3425605</identifier><identifier>CODEN: IOJPA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Air gaps ; biased inductors ; hybrid core inductors ; Inductance ; Inductors ; magnetic biasing ; Magnetic cores ; permanent magnet inductors ; Permanent magnets ; Pre-magnetized inductors ; Saturation magnetization ; Topology</subject><ispartof>IEEE open journal of power electronics, 2024, Vol.5, p.1309-1327</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-5e645aacde784297889c3a4c62546fe441f9382c3b21c6c1a0b8a95d7f3d922c3</cites><orcidid>0000-0001-9653-5437 ; 0000-0002-1379-3279 ; 0000-0001-7046-8459 ; 0000-0002-0043-0030 ; 0000-0001-9649-7047 ; 0000-0001-7046-9224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10591423$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Aguilar, Andres Revilla</creatorcontrib><creatorcontrib>Munk-Nielsen, Stig</creatorcontrib><creatorcontrib>Bendixen, Flemming Buus</creatorcontrib><creatorcontrib>Ouyang, Ziwei</creatorcontrib><creatorcontrib>Duffy, Maeve</creatorcontrib><creatorcontrib>Zhao, Hongbo</creatorcontrib><title>Permanent Magnet Biased Inductors-An Overview</title><title>IEEE open journal of power electronics</title><addtitle>OJPEL</addtitle><description>This article provides a comprehensive overview of the state of the art in the field of permanent magnet biased inductors, (PMBIs). The theoretical benefits of PMBIs, operating in DC applications, were identified decades ago, in the late 1950's. Compared with a non-biased inductor, a 100% linear biased PMBI, can achieve the same inductance and saturation current, while requiring only half of the core's cross-sectional area or half the number of turns. In practicality, achieving 100% biasing without introducing additional losses, or detrimental conditions for the permanent magnet's lifetime, becomes an important challenge and the development and achievements of PMBIs have been evolving until present days. Therefore, this overview paper, first introduces the basic background knowledge required for the development of PMBIs, including an overview of the design benefits of biasing, the possible design strategies, additional benefits and possibilities of over-biasing, and a brief introduction to permanent magnets, PMs. The historical evolution of the different biasing techniques, and the employed core and PM topologies, are analyzed and evaluated. The different physical prototype implementations found in the literature, and their operating characteristics, achievements, and limitations, are compiled and evaluated. Finally, the present challenges of PMBI implementation, and the future perspectives towards optimized development are summarized.</description><subject>Air gaps</subject><subject>biased inductors</subject><subject>hybrid core inductors</subject><subject>Inductance</subject><subject>Inductors</subject><subject>magnetic biasing</subject><subject>Magnetic cores</subject><subject>permanent magnet inductors</subject><subject>Permanent magnets</subject><subject>Pre-magnetized inductors</subject><subject>Saturation magnetization</subject><subject>Topology</subject><issn>2644-1314</issn><issn>2644-1314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkM1Kw0AURgdRsNS-gLjIC6TOnb9klrVUrVTSha6H6c2dktImMokV3970B-nqXj44Z3EYuwc-BuD2sXhbzhZjwYUaSyW04fqKDYRRKgUJ6vriv2Wjtt1wzoUG6IcBS5cUd76mukve_bqmLnmqfEtlMq_Lb-ya2KaTOin2FPcV_dyxm-C3LY3Od8g-n2cf09d0UbzMp5NFikLbLtVklPYeS8pyJWyW5xalV2iEViaQUhCszAXKlQA0CJ6vcm91mQVZWtHvQzY_ecvGb9xXrHY-_rrGV-44NHHtfOwq3JJDQEJBhAZKZfKQQxYErjS32qsgVe8SJxfGpm0jhX8fcHfo54793KGfO_froYcTVBHRBaAtKCHlHzXLaq4</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Aguilar, Andres Revilla</creator><creator>Munk-Nielsen, Stig</creator><creator>Bendixen, Flemming Buus</creator><creator>Ouyang, Ziwei</creator><creator>Duffy, Maeve</creator><creator>Zhao, Hongbo</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9653-5437</orcidid><orcidid>https://orcid.org/0000-0002-1379-3279</orcidid><orcidid>https://orcid.org/0000-0001-7046-8459</orcidid><orcidid>https://orcid.org/0000-0002-0043-0030</orcidid><orcidid>https://orcid.org/0000-0001-9649-7047</orcidid><orcidid>https://orcid.org/0000-0001-7046-9224</orcidid></search><sort><creationdate>2024</creationdate><title>Permanent Magnet Biased Inductors-An Overview</title><author>Aguilar, Andres Revilla ; Munk-Nielsen, Stig ; Bendixen, Flemming Buus ; Ouyang, Ziwei ; Duffy, Maeve ; Zhao, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-5e645aacde784297889c3a4c62546fe441f9382c3b21c6c1a0b8a95d7f3d922c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air gaps</topic><topic>biased inductors</topic><topic>hybrid core inductors</topic><topic>Inductance</topic><topic>Inductors</topic><topic>magnetic biasing</topic><topic>Magnetic cores</topic><topic>permanent magnet inductors</topic><topic>Permanent magnets</topic><topic>Pre-magnetized inductors</topic><topic>Saturation magnetization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aguilar, Andres Revilla</creatorcontrib><creatorcontrib>Munk-Nielsen, Stig</creatorcontrib><creatorcontrib>Bendixen, Flemming Buus</creatorcontrib><creatorcontrib>Ouyang, Ziwei</creatorcontrib><creatorcontrib>Duffy, Maeve</creatorcontrib><creatorcontrib>Zhao, Hongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aguilar, Andres Revilla</au><au>Munk-Nielsen, Stig</au><au>Bendixen, Flemming Buus</au><au>Ouyang, Ziwei</au><au>Duffy, Maeve</au><au>Zhao, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permanent Magnet Biased Inductors-An Overview</atitle><jtitle>IEEE open journal of power electronics</jtitle><stitle>OJPEL</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>1309</spage><epage>1327</epage><pages>1309-1327</pages><issn>2644-1314</issn><eissn>2644-1314</eissn><coden>IOJPA6</coden><abstract>This article provides a comprehensive overview of the state of the art in the field of permanent magnet biased inductors, (PMBIs). The theoretical benefits of PMBIs, operating in DC applications, were identified decades ago, in the late 1950's. Compared with a non-biased inductor, a 100% linear biased PMBI, can achieve the same inductance and saturation current, while requiring only half of the core's cross-sectional area or half the number of turns. In practicality, achieving 100% biasing without introducing additional losses, or detrimental conditions for the permanent magnet's lifetime, becomes an important challenge and the development and achievements of PMBIs have been evolving until present days. Therefore, this overview paper, first introduces the basic background knowledge required for the development of PMBIs, including an overview of the design benefits of biasing, the possible design strategies, additional benefits and possibilities of over-biasing, and a brief introduction to permanent magnets, PMs. The historical evolution of the different biasing techniques, and the employed core and PM topologies, are analyzed and evaluated. The different physical prototype implementations found in the literature, and their operating characteristics, achievements, and limitations, are compiled and evaluated. Finally, the present challenges of PMBI implementation, and the future perspectives towards optimized development are summarized.</abstract><pub>IEEE</pub><doi>10.1109/OJPEL.2024.3425605</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9653-5437</orcidid><orcidid>https://orcid.org/0000-0002-1379-3279</orcidid><orcidid>https://orcid.org/0000-0001-7046-8459</orcidid><orcidid>https://orcid.org/0000-0002-0043-0030</orcidid><orcidid>https://orcid.org/0000-0001-9649-7047</orcidid><orcidid>https://orcid.org/0000-0001-7046-9224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1314 |
ispartof | IEEE open journal of power electronics, 2024, Vol.5, p.1309-1327 |
issn | 2644-1314 2644-1314 |
language | eng |
recordid | cdi_ieee_primary_10591423 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Air gaps biased inductors hybrid core inductors Inductance Inductors magnetic biasing Magnetic cores permanent magnet inductors Permanent magnets Pre-magnetized inductors Saturation magnetization Topology |
title | Permanent Magnet Biased Inductors-An Overview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permanent%20Magnet%20Biased%20Inductors-An%20Overview&rft.jtitle=IEEE%20open%20journal%20of%20power%20electronics&rft.au=Aguilar,%20Andres%20Revilla&rft.date=2024&rft.volume=5&rft.spage=1309&rft.epage=1327&rft.pages=1309-1327&rft.issn=2644-1314&rft.eissn=2644-1314&rft.coden=IOJPA6&rft_id=info:doi/10.1109/OJPEL.2024.3425605&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_c1cec2eec61d468f817f2cb5095a4f34%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10591423&rft_doaj_id=oai_doaj_org_article_c1cec2eec61d468f817f2cb5095a4f34&rfr_iscdi=true |